
ReportBuilder

 Developer’sGuide
 Fourth Edition

ReportBuilder
Developer's Guide
Fourth Edition

Copyright © 2000-2007 by Digital Metaphors Corporation

i

CONTENTS

INTRODUCTION
The Basics

Report Creation ...3
Select ...3
Design ..4
Process ..4
Generation ...5

A Quick Test Spin

Overview ..7
Create a New Application ..7
Create a Table, DataSource, and Data Pipeline Component7
Create a Report and Connect it to the Data ..7
Invoke the Report Designer ...7
Place a Label Component in the Header Band ..7
Place a DBText Component in the Detail Band ...8
Preview the Report at Design-Time ...8
Preview the Report at Run-Time ...8

The Best Way to Learn ReportBuilder?

Start simple, then go to the next easy level. ..11
Use the online help. ...11
Use this manual. ..11
Run the examples; Study the examples; Know the examples.11

Elements of the User Interface

The Report Designer ...13
The Report Tree ..14
The Object Inspector ...15
The Data Tree ..15

Working with the Report Designer

Overview ..17
Some tips to help you get the most out of ReportBuilder:17

Reporting Basics

Lookup Tables/Queries ..19
Filtering Data ...19
Performing Calculations ...19
Display Formats ...20
Dynamic Bands ..20
Stretching Memos and Shapes ..20
Controlling Component Visibility ..20

iii
REPORTBUILDER FUNDAMENTALS

MAIN
Introduction

Overview ..25
Report Layout ..25
Report Output ..25
Data Access ...25
Data Process ...25

The Delphi Components

 DBPipeline ..27
 BDEPipeline ..27
 TextPipeline ..27
 JITPipeline ..27
 Report ...27
 Viewer ...27
 Archive Reader ...27

Report Components

Overview ..29
 Memo ..29
 RichText ..29
 Label ...29
 SystemVariable ...30
 Variable ...30
 Image ..30
 Shape ...30
 TeeChart ...30
 BarCode ..30
 2D BarCode ..30
 CheckBox ...30
 DBText ..30
 DBMemo ...30
 DBRichText ...31
 DBCalc ..31
 DBImage ...31
 DBBarCode ...31
 2D DBBarCode ...31
 DBTeeChart ..31
 DBCheckBox ..31
 Region ..31
 SubReport ...31
 CrossTab ..31
 PageBreak ..31

iv
Smart Layouts

Overview ..33
Anchors ..33
StretchWithParent ..33
ShiftRelativeTo ..33
StopPosition (for subreports) ...33
BottomOffset ..33
OverFlowOffset ..33
ReprintOnOverFlow ...33
One Memo in the Detail Band ..34
One Memo with a Shape Background ...34
One Memo with Label Beneath ...35
Two Stacked Memos in the Detail Band ..35
Two Side-by-Side Memos with Labels Below ..36
Child SubReports in Fixed Positions ...36
One Memo with Two Side-by-Side Memos Below ...37

SubReports

Overview ..39
Single Dataset ...39
Master Dataset with Single Detail Dataset ..40
Master Dataset with Nested Detail Datasets ...40
Master Dataset with Multiple Independent Datasets41
Independent Datasets ..41

Form Emulation

Overview ..43
Single Page Forms ..43
Multi-Page Forms ..45

DATA
Introduction

Overview ..49
BDEPipeline ...49
DBPipeline ...49
TextPipeline ...49
JITPipeline ...49
Supplying Data ..49
Controlling Data Traversal ...50

Database Support

Overview ..53
Data Access ...53

v

Database Alternatives

Overview ..55
ADO ...55
Included with Delphi. Used to connect to MS SQL Server and MS Access55
IBExpress ..55
Included with Delphi. Used to connect to Interbase and Firebird.55
DBExpress ...55
Direct Oracle Access (DOA) ..55
Used to connect to Oracle. ..55
mySQLDAC ...55
Advantage ..55
DBISAM and ElevateDB ..55
NexuxDB ..55

Text Files

The TextPipeline Component ..57
The Field Editor ...57

Delphi Objects

Overview ..59
JITPipeline ...59

Native Access to Proprietary Data

Overview ..61

CODE
The Delphi Event Model

Overview ..65
Significance ...65
Timing ..65
ReportBuilder Events ...65
Report.OnIntializeParameters ...65
Report.BeforeOpenDataPipelines ...65
Band.BeforePrint ...66
Variable.OnCalc ...66

Dynamic Configuration

Configure Reports During Generation ...67
Font Color ..67
Concatenation ..68
Address Squeeze ..69
 Continued Group ..70
Regions ..71
SubReports ..72

vi
Performing Calculations

Overview ..73
DBCalc component ..73
Variable component ...73
Count ...74
Count Master/Detail ...75
Group Total ..76
Grand Total ..77
Cumulative Sum ..78
Conditional Group Total ...79
Conditional Grand Total ...80
Look Ahead Total ...81

Creating Reports in Code

Coding a Report ...83

DESIGN
The Report Designer

Design Tab ..89
Preview Tab ...89

Dialogs

Print Dialog ..91
Page Setup Dialog ...92
Groups Dialog ..93
Print to File Setup Dialog ...93
Data Dialog ..94
Grid Options... 94
Outline Settings ...94
Find Text Settings ..94

Toolbars

Overview ..95
The Report Tree ..95
The Data Tree ..95
Standard Component Palette ..96
Data Component Palette ...97
Advanced Component Palette ...98
Standard Toolbar ...98
Edit Toolbar ...99
Format Toolbar ..100
Align or Space Toolbar ..101
Size Toolbar ...102
Nudge Toolbar ...102
Draw Toolbar ...103

Drag and Drop Support

Overview ..105

The Report Wizard

Overview ..107
Report Wizard: Create a Simple Report ..107
Report Wizard: Create a Group-Based Report ..110

vii
PRINT
Introduction

Generation ...115

Previewing

Print Preview ..117
Print ...117
Email ..117
Find Text ..117
Zoom Controls ...117
Navigation Controls ...117

Custom Printing Settings

Overview ..119
BinName ..119
Collation ...119
Copies ..119
DocumentName ...119
Duplex ..119
Margins ..119
Orientation ...119
PaperHeight & PaperWidth ..119
PaperName ..119
PrinterName ...119

PDF

Print to PDF ...121
Printing directly to PDF file ..121
Allow the end user to print to PDF ...121
Printing directly to PDF stream ..121

Report Archiving

Overview ..123
Archiving a Report ...123
Using the ArchiveReader ...123

Print to ASCII Text

Overview ..125
Print directly to the ASCII text file ..125
Allow the end user to print to the ASCII text file ..125

Report Emulation Text File

Overview ..127
Print directly to report emulation text file ..127
Allow the end user to print to a report emulation text file127

RTF, HTML, and Other Formats

Overview ..129
TExtraDevices ...129
PsRBExportDevices ..129
llPDFLib ...129
Gnostice eDoc Engine ...129

viii
Emailing Reports

Overview ..131
Enable Email option for the Previewer ...131
Launch Email client with PDF attached ...131
Send Email with no user interaction ..131
Send Email directly using Indy ...131

DEPLOY
Introduction

Overview ..135
Application Deployment ...135
Report Deployment ..135

Report Templates

Overview ..137
File-based Templates ..137
Database Templates ..138
Loading and Saving Reports ...138

As an EXE

Overview ..139

As Packages

Overview ..141

International Language Support

Overview ..143
The Default Language ...144
Custom Translations ..145

ix
REPORTBUILDER ENTERPRISE EDITION
FUNDAMENTALS

MAIN
Introduction

Overview ..151
Data ...151
Calc ..152
Design ..153
Preview ..153

The Delphi Components

Overview ..155
DBPipeline ...155
BDEPipeline ...155
TextPipeline ...155
JITPipeline ...155
Report ..155
Viewer ..155
ArchiveReader ...155
DataDictionary ...156
Designer ..156
ReportExplorer ...156

Designer Component

Overview ..157
AllowDataSettingsChange ...157
AllowSaveToFile ..157
DataSettings ..157
Icon ..157
InitStorageType & IniStorageName ...157
RAPInterface ...157
RAPOptions ...157
Report ..157
ShowComponents ...157
TabsVisible ..157
A Simple End-User Report Solution ..158

 Report Explorer

Overview ..161
Designer ..161
FolderFieldNames ...161
FolderPipeline ..161
ItemFieldNames ...161
ItemPipeline ...161
ModalForm ...161

x

Data Dictionary

Overview ..163
FieldFieldNames ..163
FieldPipeline ..163
TableFieldNames ...163
TablePipeline ...163

Putting It All Together

Summary ...165

On-Line Help

Overview ..167

DATA
Introduction

Overview ..171
Dataview ..171

Query Wizard

Overview ..173
Query Wizard: Create a Simple Query-Based Dataview173

Query Designer

Overview ..177
Query Designer: Adding Search Criteria ..177
Create a Group Sum ..179
Concatenate Fields ..182
Edit SQL ..184

Configuring DADE

Overview ..185
SessionType ..185
AllowEditSQL ...185
DatabaseName ..185
DataDictionary ...185
UseDataDictionary ...185
SQLType ..185
DatabaseType ...185
CollationType ...185
GuidCollationType ...185
IsCaseSensitive ...185
Data Settings ...186

DADE Architecture

Overview ..187
Base Classes ...187
DADE Plug-in Classes ...188

xi
Extending DADE

Overview ..189
Dataview Templates ..189
Dataview Template: The End User View ...189
Dataview Template: The Implementation ..191
Support for Database Products ...191
Classes ..192

CODE
Introduction

Overview ..195
About RAP ...195

The Calc Workspace

Overview ..197
The Code Explorer ...198
The Code Editor ...200
Message Window ..201
The Code Toolbox ...201

Writing RAP Code

Programs in RAP ...205
Coding an Event Handler ...205
Compiling Event Handlers ...206
Declaring Local Variables ..206
Declaring Local Constants ...206
Declaring Global Variables ..206
Declaring Global Constants ...207
Declaring Global Procedures and Functions ...207
Procedure and Function Parameters ...208
Calling Procedures and Functions ...208

Configuring RAP

End User Configurations ..209

Extending RAP

RAP Pass-Through Functions ...213
Adding Functions to the Code Toolbox ..213
Adding Classes and Properties via RTTI ...214

Debugging RAP Code

CodeSite Support ..215
Using the CodeSite Functions ...216
Conditionally Compiling CodeSite Support ..217

DESIGN
The Report Explorer

Report Explorer Toolbar ..221

xii
PRINT
End-User Options

Overview ..225
End-User Applications ...225

DEPLOY
Summary

Overview ..229
Application Deployment ...229
Report Deployment ..229

xiii
REPORT TUTORIALS

Creating a Report Via the Data Tree

Overview ..233
Create a Tutorial Folder ...233
Create a New Application ..233
Create a Table, DataSource, and DataPipeline Component234
Create a Report and Connect it to the Data ..234
Invoke the Report Designer and Set the Paper Orientation234
Set the Header Band Height to 1 inch ...234
Create Labels in the Header Band ..235
Use the Data Tree to Lay Out the ..236
Customer Information ..236
Adjust the Layout ...237
Add a TimeStamp ..238
Add Page Numbers ...238
Preview the Report at Run-time ...239

Creating a Report Via the Report Wizard

Overview ..241
Create a New Application ..241
Create a Table, DataSource, and DataPipeline Component242
Create a Report and Connect it to the Data ..242
Invoke the Report Designer and Access the Report Wizard242
Use the Report Wizard to Lay Out a Tabular Style Report242
Preview the Report ..243
Set the Report to Two-Pass Mode ...243
Save the Report Layout to a Template File ...244
Use the Report Wizard to Lay Out a Vertical Style Report244
Modify the Report Layout to Contain Columns ..245
Save the Report Layout to a Template File ...245
Add the Run-Time Interface ...246
Components ..246
Code the Event Handlers ...247
Compile and Run the Application ..248

A Simple Report the Hard Way

Overview ..251
Create a New Application ..251
Create a Table, DataSource, and DataPipeline Component252
Create a Report and Connect it to the Data ..252
Invoke the Report Designer and Set the Paper Orientation252
Lay Out the Customer List Title Label in the Header Band252
Lay Out the Company Title Label in the Header Band253
Create Labels for the Header Band ...254
Complete the Header Band Layout ...254
Lay Out the Detail Band ...255
Align the Header Band Labels Vertically ...256
Align the Header Band Labels with the Detail Band DBText Components256
Set PrintDateTime ...256
Set Page Numbers ..257
Preview the Report at Run-Time ...257

xiv
Groups, Calculations, and the Summary Band

Overview ..259
Create a New Application ..259
Create a Query, DataSource, and DataPipeline Component260
Create a Report and Connect it to the Data ..260
Invoke the Report Designer ...260
Create Labels in the Header Band ..260
Create a Group on the 'rcmndation' Field ..261
Lay Out the Group Header Band ...261
Code the BeforeGenerate Event of the Group Header Band262
Add General Data to the Detail Band ..263
Add the Vital Stats Data to the Detail Band ...264
Add the Pricing Data to the Detail Band ..265
Align the Pricing Data Components ...265
Add the Recommendation Data to the Detail Band266
Align the Recommendation Data Components ..266
Add the Stock Symbol and Company Data to the Detail Band267
Lay Out the Footer Band ...268
Lay Out the Summary Band ..269
Adjust the Summary Band Labels ...270
Create and Adjust Variable Components ..270
Assign Event Handlers to the OnCalc Events of the Variable Components ..271
Create the Grand Total ..272
Preview at Run-Time ...273

Using Regions to Logically Group Dynamic Components

Overview ..275
Create a New Application ..275
Create a Table, DataSource, and DataPipeline Component276
Create a Report and Connect it to the Data ..276
Invoke the Report Designer ...276
Configure the Header and Footer Bands ...276
Create a Group on the 'Category' Field ...277
Create an Image Region ..277
Adjust Image Region Components ..278
Create a Memo Region ..279
Create a Fields Region ..279
Adjust the DBText Components ..280
Add a Color-Coding Event Handler ...281
Preview the Report at Run-Time ...282

xv
Forms Emulation with a WMF Image

Overview ..285
Create a New Application ..285
Create a Table, DataSource, and DataPipeline Component286
Create a Report and Connect it to the Data ..286
Create Calculated Fields ...286
Configure the Page Size and Bands ..287
Create an Image Component ..287
Create the Wages DBText Components ...288
Create the Withholding DBText ...289
Components ..289
Create the Address Information ...289
Create Duplicate Component ..290
Information ...290
Write the 'address squeeze' Routine ...291
Preview the Report at Run-Time ...292

Master - Detail Report

Overview ..293
Create a New Application ..293
Create the Table, DataSource, and DataPipeline for the Master Table294
Create the Table, DataSource, and DataPipeline for the Detail Table294
Create the Table, DataSource, and DataPipeline for the Lookup Table294
Define the Relationship between the Customer and Order Table294
Define the Relationship between the Order and Employee Table295
Create a Report and Connect it to the Data ..295
Create the Header Band Labels ..296
Create the Header Band Shape ..297
Use the Data Tree to Complete the Header Band Layout297
Create a Group on the CustNo Field ...298
Begin the Order Information Layout ...299
Complete the Order Information Layout ..300
Lay Out the Shipping Information Components ...301
Lay Out the Payment Information Components ...301
Complete the Detail Band ..302
Lay Out the Summary Band ..303
Lay Out the Footer Band ...304
Preview the Report at Run-Time ...304

xvi
Master - Detail - Detail Report

Overview ..307
Create a New Application ..307
Update the Report Name ...308
Add the Table, DataSource and DataPipeline for the Items Detail Table308
Define the Relationship Between the Order and Items Table308
Create the Table, DataSource and DataPipeline for the Parts Lookup Table 309
Define the Relationship Between the Item and Parts Table309
Update the Report Title ..309
Create SubReport2 and Connect it to the Data ...309
Remove the Title and Summary Band ...310
Create a Group on the 'OrderNo' Field ..311
Lay Out the Group Header Band for the SubReport311
Begin Laying Out the Items Information Components for the SubReport312
Complete the Items Information Layout ...313
Complete the Detail Band Layout for the SubReport314
Lay Out the Group Footer Band for the SubReport314
Code the Calculations for the Totals ..315
Complete the Layout for SubReport1 ..316
Convert the Title Band to a Group Header Band ...316
Preview the Report at Run-Time ...317

Interactive Previewing with Drill-Down Subreports

Overview ..319
Create a New Application ..319
Invoke the Report Designer and Configure the Drill-Down320

Hooking Reports Together with Section-Style Subreports

Overview ..323
Create a New Application ..323
Transfer the Customer List Report to the Form ...324
Transfer the Stock Summary Report to the Form ..324
Create and Configure the Main Report ..325
Create the Customer List SubReport ...325
Create the Stock Summary SubReport ...326
Preview the Report at Run-Time ...327
Copy the Event Handlers from the Stock Summary Report327
Re-attach the Event Handlers to the Stock Summary Subreport328
Add a Title Page to the Report ..329
Begin Laying Out the Title Band ..329
Complete the Title Band Layout ..330

Using Columns to Create Mailing Labels

Overview ..333
Create a New Application ..333
Invoke the Report Designer and Configure the Page Layout334
Configure the Report ...334
Create Mailing Labels Via the Label Template Wizard335

xvii
Printing to a Text File

Overview ..337
Create a New Application ..337
Complete the Report Wizard Tutorial ..337
Load the Tabular Style Report Template ...337
Assign User Names to the DBText Components ...338
Specify the File Name and Format ..338
Configure the Report to Print to File ..338
Soft Code the Template Name ..338
Soft Code the Text File Name ...339
Print the Report to File ...339

Printing from a Text File

Overview ..341
Create a New Application ..341
Create the Text DataPipeline Component ...341
Define the Data Fields for the Text Pipeline ...341
Create a Report and Connect it to the Data ..342
Test the Data Connection ..342
Load the Vertical Style Report Template ...342
Soft Code the Text File Name ...343
Preview the Report at Run-Time ...343

Using the JITPipeline to Print from a StringGrid

Overview ..345
Create a New Application ..345
Rename the TextPipeline ..346
Create a StringGrid ..346
Add Code to Load the StringGrid ...346
Create the JIT DataPipeline Component ...347
Define the Data Fields for the JITPipeline ...347
Add a Function to Return the Grid Field Values ..347
Add JITPipeline Event Handlers to Return the Field Values348

Using the Rich Text Component for Mail/Merge

Overview ..349
Create a New Application ..349
Create a Table, DataSource, and DataPipeline Component349
Create a Report and Connect it to the Data ..350
Invoke the Report Designer and Set the Page Layout350
Modify the Bands ...350
Load MMLetter into the RichText Component ...351
Add Fields to the Letter ..351
Preview the Report at Run-Time ...352

xviii
Creating a Crosstab

Overview ..353
Create a New Application ..353
Create a Query, DataSource, and DataPipeline Component353
Create a Report ...354
Design the Crosstab ..355
Add Additional Values to the Crosstab ..355
Set the Format of the Values ...355
Calculate Totals by State ...356
Lay Out the Header Band ..356
Set Pagination ...356
Use Repeated Captions ...356

xix
RAP TUTORIALS

Concatenating Fields

Overview ..359
Create a DataView ...359
Layout the Report ..360
Navigate the Calc Workspace ...360
Add the Concatenation Code ...361
Compile and Preview ...362
Save the Report ...362
Load the Report ...362

Color-Coding Components

Overview ..363
Open the Demo Project ...363
Enable DetailBeforePrint ...363
Add Local Variables ...364
Preview and Save ..365

Dynamic Duplexing

Overview ..367
Enable RAP ...367
Create a New DataView ..367
Create Report Layout ..368
Compile and Preview ...369

Adding Functions to RAP

Overview ..371
Create a New Unit ...371
Edit Uses Clause ...371
Add TraSystemFunction Descendent for Category372
Add New Function Class ...373
Implement ExecuteFunction ..373
Implement GetSignature ..373
Implement HasParams ..374
Add Initialization ...374
Add myRapFuncs to a Project ...375
See ApplicationFilename in Code Toolbox ..375
Add ApplicationFilename to Code ...376

xx
Extending the RAP RTTI

Overview ..377
Declare TmyTDataBaseRTTI ..378
Implement GetPropList ..378
Implement RefClass ..379
Implement GetPropRec ...379
Implement CallMethod ...380
Implement GetParams ...380
Implement GetPropValue ..381
Implement SetPropValue ...381
Register the Class ...381
Create Access Function ...382
Add myRapClass to a Project ..384
Write RAP Code ..385
Preview the Report ..386

Printing a Description of AutoSearch Criteria

Overview ..387
Create Search Criteria ...388
Write the Code ...388
Compile and Preview ...389

Displaying Delphi Forms from RAP

Overview ..391
Add Components ...391
Create a New Unit ...393
Add Units to Project ...397
Create a DataView ...397
Layout the Report ..397
Declare Global Variables ...397
Implement Global OnCreate ..398
Group Header BeforePrint Event ...399
Compile and Preview ...401

xxi
APPLICATION TUTORIALS

Building a Reporting Application

Overview ..405
Create a New Application ..405
Create a ListBox and Preview Button on the Main Form405
Add a Form to the Project ..406
Create an Ancestor Form Class ..406
Make the Tutorial Report Form a Descendant of TrbReportForm407
Populate the List Box in the OnCreate Event of the Main Form408
Code the LaunchReport Procedure in the Main Form408
Hook the LaunchReport Procedure to the ListBox and Preview Button409
Create a Customized Print Preview Form ...410
Add the Customized Print Preview Form to your Project410

Building an End-User Reporting Application

Overview ..413
Add ReportExplorer tables to the database ...413
Create a New Application ..414
Create Data Access Components for the Folder Table414
Create Data Access Components for the Item Table415
Create the ReportBuilder Components ..415
Configure the Designer Component ..416
Compile and Run the Application ..416
Create New Folders ...417

Adding Data Dictionary Support to the End-User Application

Overview ..419
Add DataDictionary tables to the database ...419
Open the End-User Application ...420
Create Data Access Components for the Tables ..420
Create Data Access Components for the Field Table420
Create Data Access Components for the Join Table421
Create the Data Dictionary Component ...421
Populate the Tables ...421
Configure the Designer Component ..422
Compile and Run the Application ..422
Create a Simple Query ..422
Create a Simple Report ...423

Customizing the Report Explorer Form

Overview ..425
Open the End-User Application ...425
Create a New Report Explorer Form ...425

xxii
Building a Report Application using InterBase

Overview ..427
Review the Create Tables SQL script for the Report Explorer427
Run the Create Tables SQL Script ..429
Create a New Application ..430
Create Data Access Components for the Folder Table430
Create Data Access Components for the Item Table431
Create the ReportBuilder Components ..431
Run the Application ..432
Create New Folders ...433

Where Do I Go From Here?
The Digital Metaphors Website ..435
Learning ReportBuilder ..435
ReportBuilder Help ..435
RAP Help ...435
ReportBuilder Newsgroups ..435
Further Support ..436

INTRODUCTION

INTRODUCTION

The Basics 3

A Quick Test Spin 7

The Best Way to Learn ReportBuilder 11

Elements of the User Interface 13

Working with the Report Designer 15

Reporting Basics 19

3The Basics

INTRODUCTION
The Basics

Welcome to the ReportBuilder Developer's Guide.
This guide is written by ReportBuilder engineers
for Delphi developers. The concepts and practical
elements of reporting with RB will be revealed
throughout this book, and the tutorials will trans-
form the abstract concepts into concrete, useful
reports and applications.

Report Creation
Report creation with ReportBuilder can be divided
into four main activities:

• Select - Refers to the selection of data.

• Design - Refers to creating a layout that
describes how the document should look.

• Process - Refers to the manipulation of the data
or the layout in order to control the generation of
the document more precisely.

• Generate - Refers to the creation of the actual
document.

ReportBuilder handles the Generate step for you,
and with the help of this guide, you can certainly
master the Select, Design, and Process activities.
First, let's get a better handle on these rather
abstract concepts.

Select
Your data is probably not locked into disposable
documents; it's organized (one way or another) as
data. When you have data, you generally have a
database. Organized data is the first key to creating
recyclable documents. ReportBuilder expects data
to take a tabular format. Yes, you can create
reports based on less structured data, but in general
it is most advantageous to have the data organized
in a table. Here's an example:

This table contains customer information. In data-
base terms, each row of the table is considered a
record. Each column of the table is considered a
field. The field names appear in the first row and
are not considered part of the data. When you are
working on the data selection, the goal is to create
a table that will enable ReportBuilder to generate
your document correctly. Therefore, you will need
to include all the fields you will need for the report,
limit the rows selected to only those which should
appear in the report, and sort the rows so that they
appear in the correct order.

4 The Basics

INTRODUCTION
Design
Once data has been selected, you can begin design-
ing your report. You do this by creating a layout.
A layout is a combination of objects that describe
how the document should look.

This is the Report Designer. As you can see, it
looks like many of the other Windows applications
you're used to working with. The big difference is
that the Report Designer does not contain a docu-
ment; it contains a layout. The layout can be used
to generate many different documents, all based on
the data you've selected. The white rectangular
areas with the horizontal bars below are called
bands. This report has a Header, Detail, and Footer
band. When ReportBuilder generates a document
from this layout, the objects in the Header band
will appear at the top of each page. The objects in
the Footer band will appear at bottom of each page.
And the objects in the Detail band will repeat down
the page until no more page space is available, at
which point a new page will be started. The Detail
band prints once for each row of your data selec-
tion. This is how a document is created from the
layout. You can generate a different document
from the same layout by simply changing your data
selection.

Process
When you create a layout, you are telling Report-
Builder exactly how you want the document to
look. But what if your document is so complex
that you can't design a layout to describe it?
Though ReportBuilder layouts are quite flexible
and powerful, as you will soon see, even the most
flexible layout is still fixed. The Process activity
of document creation allows you to provide addi-
tional instructions to ReportBuilder regarding how
the document should be created. Therefore, you
can change the report layout as the document is
generating. You can also use the processes to for-
mat data and perform calculations. Processes are
created using Delphi code or using the run-time
coding environment included with ReportBuilder
Enterprise. ReportBuilder's native language is
called RAP (for Report Application Pascal). It is
easy to learn and fun to use, especially when you
see the cool effects you can create with it. For
example, you can use RAP to combine the First
and Last Name fields of a contact so the data is eas-
ier to read in the report, or to calculate a weighted
average to appear in the summary section at the
end of a report.

Most reports do not require a process, so don't
worry about whether or not you can master this
activity. This guide will show you how to do sim-
ple calculations and even some fairly complex
stuff, if you're interested. Just remember that Pro-
cess is the place you go when you can't get a report
to look exactly the way you want and all other ave-
nues seem to be closed.

5The Basics

INTRODUCTION
Generation
Generation is what happens when you click on the
'Preview' tab in the Report Designer and see the
generated document in the print preview window.
The document will either look right, or it won't. If
it doesn't look right, then it's time to return to the
Select, Design, or Process area and make the
changes necessary to get the document generating
properly. Sometimes you learn the most by tinker-
ing with a data selection or layout and then check-
ing to see how ReportBuilder generates the
document differently.

Well, that's ReportBuilder document creation in a
nutshell. Now let's jump in and create our first
report!

7A Quick Test Spin

INTRODUCTION
A Quick Test Spin

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Delphi data access objects for use by
reports

• Work with the Report Designer

• Create and configure the most common report
components

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and blank
form.

Create a Table, DataSource, and Data
Pipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblCustomer
TableName CUSTOMER.DB

4 Double-click the Active property in the Object
Inspector to set it to true.

5 Add a DataSource component to the form.

6 Configure the DataSource component:

DataSet tblCustomer
Name dsCustomer

7 Select the RBuilder tab of the Delphi compo-
nent palette.

8 Add a DBPipeline component to the form.

9 Configure the DBPipeline component:

DataSource dsCustomer
Name plCustomer

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

Data Pipeline plCustomer
Name rbCustomerList

Invoke the Report Designer
1 Double-click on the Report component to dis-
play the Report Designer.

2 Size and Move the Report Designer window so
that the Object Inspector is visible.

Place a Label Component in the
Header Band
1 Right-click over the white space of the header
band and access the Position... dialog.

2 Set the Height value to 0.9167 and click the OK
button. The header band should expand in height.

8 A Quick Test Spin

INTRODUCTION
NOTE: You can also change the height of the
header band by dragging the gray divider that
appears below the white space of the header band.
This method is quick and easy, but not as precise.

3 Click the Label component icon on the
Report Designer component palette.

4 Click on the left side of the header band. A
label will be created in the header band and will
become the current selection in the Object Inspec-
tor.

5 Locate the Edit box at the upper left corner of
the Report Designer.

6 Select the text inside it and replace it with Com-
pany.

7 Use the font controls to set the font:

Font Name Times New Roman
Font Size 12
Font Style Bold & Italic

NOTE: The font controls appear to the right of the
Edit box and provide the following functions:

• Font Name drop-down list
• Font Size drop-down list
• Bold
• Italic
• Underline Font Style
• Text Alignment
• Font Color
• Highlight Color

Place a DBText Component in the
Detail Band

1 Click the DBText component icon on the

Report Designer component palette.

2 Click in the detail band. A DBText component
will be created.

3 Locate the two drop-down lists at the upper left
corner of the Report Designer. The list on the left
contains a list of data pipelines. It should default to
the Customer data pipeline since this is the data
pipeline for the report. The list on the right con-
tains a list of fields for the currently selected data
pipeline.

4 Select the Company field from the field list.
'Kauai Dive Shoppe' should be displayed in the
DBText component.

5 Use the font controls to configure the font:

Font name Times New Roman
Font size 10
Font color Black

Preview the Report at Design-Time
1 Click the Preview tab in the Report Designer.
You should get a four-page report.

Preview the Report at Run-Time
1 Close the Report Designer.

2 Select the Standard tab of the Delphi component
palette.

3 Add a Button component to the form.

9A Quick Test Spin

INTRODUCTION
4 Configure the Button component:

Name btnPreview
Caption Preview

5 Put the following code in the OnClick event of
the button:

rbCustomerList.Print;

6 Run the Project.

7 Click on the Preview button. The report should
be displayed in the Print Preview form.

11The Best Way to Learn ReportBuilder?

INTRODUCTION
The Best Way to Learn ReportBuilder?

Start simple, then go to the next easy
level.
This is the secret of champions. If you work your
way from one easy level to the next, then you can
end up a very skillful developer. If you jump in at
the top, you can end up quite overwhelmed. When
you begin to use ReportBuilder, do the easiest
report you can imagine. Better yet, complete the
'Quick Test Spin' section of this manual: it will
show you how to build a simple report (and it will
only take about 5 minutes). I know some of you
will read this and say, “But I don't have time for
that. I need to know if ReportBuilder will do my
real reports.” My answer is that you don't have
time to not do it. While you burn away hours
attempting to complete real reports, you will be
learning from experience, which is not a bad exer-
cise in and of itself, but this approach is fairly
awful when compared with learning from the mas-
ter. Give yourself at least 2-3 hours to go through
the tutorials. They have been ordered from simple
to complex. The first few tutorials are the easiest;
the last few are the most difficult. This gradient
approach should allow you to build up your
ReportBuilder skills with minimum frustration.
Regardless of whether you decide to use this man-
ual or not, you should remember this important
concept: start simple, then go to the next easy level.

Use the online help.
The help is accessible in three different ways: by
accessing the Help | Contents menu option from
the Delphi main menu (ReportBuilder Reference
should be listed in the table of contents), by select-
ing a component or property and clicking the F1

key (the appropriate help topic should automati-
cally display), and by searching the help index for
a topic. The help contains over 1,500 topics writ-
ten for the ReportBuilder developer. It's worth
using often.

Use this manual.
This manual is designed to give you hands-on
experience with report building and conceptual
background material that should allow you to bet-
ter utilize ReportBuilder.

Run the examples; Study the examples;
Know the examples.
The examples that come with ReportBuilder are an
invaluable part of the product. Not only do they
look nice and showcase many of the product's fea-
tures, they also show you how to build different
types of reports. Many of the examples were put
together in direct response to questions developers
have posed about how to use ReportBuilder. For
instance, one example shows you how to compile
and use a report as a DLL. Study the examples
thoroughly and use them as a reference when you
are trying to build a report and not quite sure how
to put all the pieces together. If you're having a
problem getting something to work, refer to the
examples and see whether there is an example of a
similar report. The examples are located in the
\RBuilder\Demos directory.

NOTE: If you have completed all of the tutorials in
this manual, you will be able to pick the examples
apart and identify key techniques in short order.

13Elements of the User Interface

INTRODUCTION
Elements of the User Interface

The Report Designer
The Report Designer is your key to productivity
when creating reports in Delphi. The Report-
Builder engineers have made every effort to ensure
that the Report Designer interface is consistent
with other Windows programs you've used before.
The major areas of the Designer are listed below.

Component Palette Toolbars
These toolbars are used to create new components.
To create a component, click on the icon and then

click in the white space of a band. There are three
component toolbars: Standard, Data, and
Advanced. Use the Standard components to create
text, lines, shapes, memos, richtext, etc. Use the
Data components when you want to display the
data from a database. Use the Advanced compo-
nents when you need to create more complex
reports using subreports, regions, or crosstabs.

The Report Designer

 Header Band

 Detail Band

Footer Band

Component Toolbars

Edit Toolbar

Status Toolbar

Rulers

 Data Tree

Report Tree

14 Elements of the User Interface

INTRODUCTION
Edit Toolbar
The Edit toolbar allows you to set the most impor-
tant property for a given component. For example,
when a Label component is selected, an edit box
appears that allows you to set the Caption. When a
DBText component is selected, two drop-down
lists appear that allow you to set the Data Pipeline
and the DataField.

Format Toolbar
This toolbar appears to the right of the Edit toolbar.
It's used to configure the font of textual compo-
nents and to control component layering via the
Bring to Front and Send to Back commands.

Rulers
The horizontal ruler allows you to determine a
component's position on the page. The vertical
ruler for each band allows you to determine a com-
ponent's position relative to the starting print posi-
tion of the band.

All Bands
Notice the gray rectangular area below the white
space of each band. This area is draggable, and it
allows you to redefine the height of the band.

Status Bar
The Status Bar shows messages and object posi-
tions.

The Report Tree
You can display the Report Tree by selecting the
View | Toolbars | Report Tree menu option. This
tool window is dockable on the left and right sides
of the Report Designer. The top pane contains a
tree view of the Report.Bands[].Objects[] structure
that comprises the report layout. The elements in
each band are displayed in z-order. The bottom
pane of the Report Tree contains the Object Inspec-
tor which can be used to view and modify proper-
ties of the currently selected object.

You can use the Report Tree to see exactly what
components are contained in the report and to
select individual components.

You can turn on the Report Outline by right-click-
ing over the Report Tree. The Report Outline is
useful when you have subreports in your report.
You can select any subreport in the Report Outline
and the bands and components for that subreport
will appear in the Report Tree. (The subreport will
also be displayed in the Report Designer.)

15Elements of the User Interface

INTRODUCTION
The Object Inspector
The Object Inspector appears in the bottom pane of
the Report Tree tool window. Use the Object
Inspector to view and modify properties of the cur-
rently selected object. When multiple objects are
selected, the Object Inspector filters the property
list to show the properties that are common to all
selected objects. Modifying a property value will
update all selected objects.

The Data Tree
You can display the data pipelines that can be used
to create data-aware components within the report
by selecting the View | Toolbars | Data Tree menu
option. The data tree shows a list of data pipelines
in the top window and a list of fields for the cur-
rently selected data pipeline in the bottom window.

You can select multiple fields in the field list and
drag them into any band. Data-aware components
and corresponding labels will then be created.
Notice the 'Data' and 'Layout' tabs at the bottom of
the Data Tree. You can use the Layout tab to cus-
tomize the behavior of the Data Tree's drag-and-
drop capabilities.

16 Elements of the User Interface

INTRODUCTION
Data Tree - cont.

The Layout tab of the Data Tree contains many set-
tings which you can use to customize the drag-and-
drop capabilities of the Data Tree.

Style drop-down list
Controls whether the DBTextand Label compo-
nents are oriented in a columnar or stacked fashion
.

All radio button
When selected, both DBText components
(assigned to the selected fields) and corresponding
label components are created.

Fields radio button
When selected, only DBText components
(assigned to the selected fields) are created.

Label radio button
When selected, only Label components (with the
captions set to the field name) are created.

Grid check boxes
Controls whether a shape is placed behind the
DBText or Label component.

Font icons
Controls the font name, size, style, and color via a
standard font dialog.

Preview image
Shows how the created components will look.

Data Tree Layout Tab

Preview image

Font icons

Style drop-down listAll radio button

Labels radio button

Fields radio button

17Working with the Report Designer

INTRODUCTION
Working with the Report Designer

Overview
The Report Designer is actually a sophisticated
component editor for the report component (other
examples of component editors in Delphi are the
Menu Editor of the TMenu component and the
Fields Editor of the TTable and TQuery compo-
nents). The Report Designer enables you to
quickly and easily lay out complex reports in much
the same way as the Delphi Form Designer.

In Delphi, when you place a component on a form,
three things occur:

1 The component is drawn on your form.

2 The declaration of the component is added to
your form unit (.pas file).

3 The design-time properties and events of the
component become visible in the Object Inspector.

In ReportBuilder, when you place a ReportBuilder
component from one of the Report Designer's com-
ponent palettes on a report band, three things hap-
pen:

1 The component is drawn on your report layout.

2 The component is added to your form unit (.pas
file).

3 The design-time properties and events of the
component become visible in the Object Inspector.

In other words, report components are just like any
other Delphi components: you can configure their
properties and assign event handlers to them using
the Object Inspector. Alternatively, you can use
the Report Designer.

Some tips to help you get the most out
of ReportBuilder:
• Maximize the Report Designer window and use

the speed menus as much as possible.

• To set display formats, make your dataset active
and then use the speed menus to access the For-
mat dialog. The Format dialog will determine
the data type of the DataField assigned to the
component and display several formats appropri-
ate for that data type. (For example, a field of
type date would provide a list of commonly used
date formats.)

• To resize the bands using the mouse, position the
mouse over the gray rectangular area below the
white space of the band, press the left mouse but-
ton, and drag.

• To access online help for a component, select the
component and Press F1.

• To make a particular band appear as the selected
object in the Object Inspector, position your
mouse cursor anywhere over the open white
space of the band (not over a component in the
band) and click the left mouse button.

• To make the report appear as the selected object
in the Object Inspector, position your mouse in
the top left corner of the Report Designer's work
area (to the left of the horizontal ruler and above
the vertical ruler) and click the Select Report

icon .

• You can cut, copy, and paste one or more report
components at a time either in the same report or
between different reports.

18 Working with the Report Designer

INTRODUCTION
• Avoid sharing a datasource for a ReportBuilder
report with a data-aware control on your Delphi
form (for example a DBGrid). This is inefficient
for reporting because when ReportBuilder
traverses the dataset to generate a report, your
data-aware controls will be repeatedly notified
that the current record has changed. If you have
any events attached to the data-aware controls,
the events will fire repeatedly as well. This
slows performance greatly and can cause unex-
pected results.

• Use the PageLimit property of the report to limit
the number of pages previewed when working on
long reports. In other words, if the report is 200
pages long, set the PageLimit to 20 and only the
first pages will be previewed.

Close the Report Designer window prior to closing
your form or exiting Delphi. Otherwise, an access
violation may occur.

19Reporting Basics

INTRODUCTION
Reporting Basics

Lookup Tables/Queries
A data-aware report component can be set to any
data pipeline on your form; therefore, if a lookup
table or query is connected to your master or detail
data, you can assign fields from the lookup data
simply by creating a data pipeline for the lookup
and then assigning that data pipeline to a compo-
nent.

Filtering Data
Whenever you set a filter on data that is connected
to a report, you need to call the Report.Reset
method prior to calling Report.Print. This will
notify ReportBuilder that it needs to re-access the
data and regenerate the report pages, rather than
use the internal engine cache. Calling
Report.Reset is a good technique whenever it
appears that a report is not regenerating in response
to changes in the data.

Performing Calculations
There are three ways to perform calculations for
reports: Delphi calculated fields, TppDBCalc com-
ponents, and TppVariable components.

1 Use Delphi calculated fields when you want to
calculate a result for each record in the dataset
based on the values of one or more fields in the
record. You can create TField objects by double-
clicking on the dataset component (TTable,
TQuery...) and accessing the Fields Editor. Use
the Fields Editor to create calculated TField
objects. Then, in the OnCalcFields event for the
dataset, add the code to calculate the result and
assign it to the TField component.

2 Use TppDBCalc components when you need to
calculate a SUM, COUNT, MIN, MAX, or AVG
for a group or an entire report. The COUNT
DBCalcType can also be used in the DetailBand to
display the line number for each record in the
report.

20 Reporting Basics

INTRODUCTION
3 Use the TppVariable component to perform cal-
culations. Set the DataType property to the desired
data type. Right-click over the variable and access
the Timing... option. Set the timing as appropriate.
Add code to the OnCalc event to perform calcula-
tions. If calculations are based on the values of
other variables, it may be necessary to set the Calc
Order of the variables. To set the Calc Order,
access the Calc Order dialog by right- clicking over
the white space of the band and selecting the Calc
Order... menu option. You can then order the vari-
ables for calculation. Return the value of the cal-
culation in the Value parameter of the OnCalc
event, or assign the result to one of the following
properties: AsInteger, AsBoolean, AsString,
AsFloat, AsDateTime, AsDate, or AsTime. The
value of the Text property will reflect the calcu-
lated value.

NOTE: Always remember that Object Pascal event
handlers do not execute at design-time; you must
compile and run your project to see the results.

Display Formats
You can specify the formats of a DBText, DBCalc,
Variable, or SystemVariable component by setting
the DisplayFormat property. DisplayFormat dif-
fers from the Delphi implementation in the case of
string types. In order to format strings, simply type
a valid EditMask into the DisplayFormat prop-
erty. ReportBuilder will then apply the EditMask
to the string value.

NOTE: ReportBuilder ignores any display formats
you specify within the TField objects of a Delphi
dataset.

Dynamic Bands
Set the Band.PrintHeight property to phDynamic
when you want the band to use page space on an
as-needed basis, shrinking or stretching to accom-
modate the report components. When the Print-
Height is set to phStatic, the band uses the exact
amount of page space specified by the Height prop-
erty (unless it is not Visible, in which case it uses
zero page space).

Stretching Memos and Shapes
Set the Stretch property of a Memo when you want
the Height of the memo to automatically stretch to
allow the entire contents of the memo to be printed.
If you are framing the memo with a Shape, set the
Shape.StretchWithParent property to True and the
Height of the shape will stretch to accommodate
the height of the memo. Finally, use the ShiftWith-
Parent property of the other report components to
determine whether the position of the report com-
ponent should move as the memo stretches.

Controlling Component Visibility
You can use the BeforePrint event of a band to
control which components appear when the band
prints. To hide all the components in a band, set
the Visible property of the band to False. To hide a
group of components, place components inside a
Region and set the Visible property of the Region
to false. To hide individual components, set the
visible of each component to False.

REPORTBUILDER FUNDAMENTALS - MAIN

REPORTBUILDER
FUNDAMENTALS

Main 25

Data 49

Code 65

Design 89

Print 115

Deploy 135

MAIN

Introduction 25

The Delphi Components 27

Report Components 29

Smart Layouts 33

SubReports 39

Form Emulation 43

25Introduction

REPORTBUILDER FUNDAMENTALS - MAIN
MAIN

Introduction

Overview
ReportBuilder is a development environment that
can be used to construct reports, report compo-
nents, and reporting applications. Because report-
ing encompasses a very wide range of
requirements, it is often difficult to put a limit on
what should be expected of a reporting tool. The
designers of ReportBuilder reduced this broad set
of requirements down to the following equation:

Report Layout
Report layout is a set of components that describe
the look and feel of the report and define the
behavior of components during report generation.

Report Output
Report output is a set of components that describe
the exact content of each page.

Data Access
Data access is the retrieval of data from a database
table, text file, Delphi object, or other dataset in an
organized fashion (structured as records and
fields).

Data Process
Data process refers to the calculation of intermedi-
ate results based on data and the modification of
the report layout as it generates.

This equation more or less covers the entire area of
development known as reporting. In terms of
importance, each element of the equation is not
supported or is weakly supported, then the utility
of the reporting solution is greatly reduced.

The Reporting Equation

26 Introduction

REPORTBUILDER FUNDAMENTALS - MAIN
Early versions of ReportBuilder focused on the
report layout and report output elements, largely
due to the fact that Delphi has abundant solutions
for the data access (ADO, BDE, dbExpress, IBEx-
press, third party data access components, String
Lists, etc.) and for the data process (events and
Object Pascal) elements. In fact, utilizing these
solutions is still a valid and productive way for
developers to use ReportBuilder. The developer
can configure standard Delphi data access compo-
nents, connect them to a report via the data pipeline
component, design and preview the report at Del-
phi design-time, and, if necessary, code event han-
dlers in Object Pascal to perform calculations or to
modify the report layout during generation.

The developers of ReportBuilder discovered that
solutions for the data access and data process ele-
ments were also needed for end users who were
utilizing the ReportBuilder Report Designer as part
of a running application. Within the context of a
running application, the Delphi developer has no
way of providing access to the data access compo-
nents or to Object Pascal as development environ-
ments. End users could not, therefore, avail
themselves of these powerful tools. This situation
eventually led to the development of DADE (the
Data Access Development Environment) and RAP
(the Report Application Pascal programming lan-
guage), which gave end users complete solutions to
data access and data process respectively. DADE
became available as part of the Professional Edi-
tion. Both DADE and RAP are available as part of
the Enterprise Edition.

27The Delphi Components

REPORTBUILDER FUNDAMENTALS - MAIN
The Delphi Components

 DBPipeline
Used for accessing data via TDataSet descen-
dants. The DBPipeline is connected via the Data-
Source property.

 BDEPipeline
In previous versions of ReportBuilder, the BDE-
Pipeline was used for accessing data via the BDE.
Though it has been replaced by the DBPipeline, it
has been retained for backward capability.

 TextPipeline
Used to access comma, tab, and fixed-length
record text files. Set the FileName property to
specify the file. Double-click on the component to
define the field structure.

 JITPipeline

Used to access any non-structured data stored in
Delphi objects or other sources. Provides total
control over the data-access process. Set the Ini-
tialIndex and RecordCount properties and code the
OnGetFieldValue event to utilize this component.
Double-click on the component to define the field
structure.

 Report
The main component. Double-click to invoke the
Report Designer. Assign the DataPipeline prop-
erty so that the report can traverse data. Assign the
DeviceType property to control where the output
of the report is directed. Call Report.Print from
Object Pascal to print the report or launch the Print
Preview Form.

 Viewer
This object is rarely used because you can replace
ReportBuilder's built-in print preview form with
your own customized version very easily (check
the Building a Reporting Application tutorial). If
you must use this component, an example is pro-
vided in \RBuilder\Demos\Reports.

 Archive Reader
After you print a report to an archive file (.raf
extension), you can read and preview the file via
this component. Just assign the ArchiveFileName
to the file and call the Print method. In terms of
displaying a report, this component works the same
as the Report component.

Delphi Components

29Report Components

REPORTBUILDER FUNDAMENTALS - MAIN
Report Components

Overview
The ReportBuilder Report Component Library
(RCL) provides a powerful, robust set of compo-
nents that have been designed and optimized specif-
ically for the reporting environment. The library
includes over 20 components that enable you to put
all types of data in your reports: Lines, Shapes,Text,
Memos, RichText, Images, Charts, and BarCodes.
Advanced components such as Regions, SubRe-
ports, and CrossTabs can be used to elegantly model
complex reports.

 Memo
Used to print multiple lines of plain text in a report.
To set the value, assign a string list to the Lines
property. To dynamically resize the memo during
printing, set the Stretch property to True. Use the
ShiftRelativeTo property to define dynamic rela-
tionships with other stretchable objects.

 RichText
Used to print formatted text. To set the value,
assign the RichText property or use the

 Label
Used to display text. Assign the Caption property
to control the text value. To resize the label auto-
matically so it fits a changing caption, set the Auto-
Size property to True.

LoadFromFile or LoadFromRTFStream methods.
Use the ShiftRelativeTo property to define
dynamic relationships with other stretchable
objects. At design-time you can use Report-
Builder's built-in RTF Editor to load, modify, and
save rich text data stored in files.

Delphi Report Components

30 Report Components

REPORTBUILDER FUNDAMENTALS - MAIN
Report Components - cont.

 SystemVariable
Used to display common report information such
as page number, page count, print date and time,
date, time, etc. The type of information displayed
is controlled by the VarType property. The format
is controlled by the DisplayFormat property.

 Variable
Used for calculations via an Object Pascal event
handler assigned to the OnCalc event or a RAP
event handler assigned to the OnCalc event.
Access the Calculations dialog (via the speed
menu) or the Calc tab of the Report Designer to
code a RAP calculation for this component.

 Image
Used to display bitmaps and windows metafiles in
reports. Assign the Picture property of this compo-
nent in order to place an image in your report. Use
the Report Designer's built-in picture dialog to load
images at design-time.

 Shape
Use this component to print various shapes
(squares, rectangles, circles, ellipses). Set the
Shape property to select a type of shape. Use the
Brush and Pen properties to control the color and
border respectively.

 TeeChart
Used to display standard (non-data-aware) Tee-
Charts. This component enables you to use Tee-
Chart inside the Report Designer. You can access
the TeeChart editor via a popup menu.

 BarCode
Used to render barcodes. The string value assigned
to the Data property is encoded based on the Bar-
CodeType. If the data to be encoded is in a data-
base, use DBBarCode. The following symbologies
are supported: Codabar, Code 128, Code 39, EAN-
13, EAN-8, FIM A,B,C, Interleaved 2 of 5, Post-
Net, UPC-A, UPC-E.

 2D BarCode
Used to render two-dimensional barcode symbolo-
gies. Supports PDF417 and MaxiCode barcode
types

 CheckBox
Displays a checkbox using the WingDings font.

 DBText
Used for displaying values from all types of data-
base fields. Use the DisplayFormat property to
format the value.

 DBMemo
Used to print plain text from a memo field of a
database table. This control will automatically
word-wrap the text. Set the Stretch property to
True and the component will dynamically resize to
print all of the text. Use the ShiftRelativeTo prop-
erty to define dynamic relationships with other
stretchable objects.

31Report Components

REPORTBUILDER FUNDAMENTALS - MAIN
Report Components - cont.

 DBRichText
Used to print formatted text from a memo or
BLOB field of a database table. This control will
automatically word-wrap the text. Set the Stretch
property to True and the component will dynami-
cally resize to print all of the text. Use the
ShiftRelativeTo property to define dynamic rela-
tionships with other stretchable objects.

 DBCalc
Used for simple database calculations (Sum, Min,
Max, Count and Average). The value can be reset
when a group breaks using the ResetGroup prop-
erty.

 DBImage
Used to print bitmaps or windows metafiles, which
are stored in a database BLOB field.

 DBBarCode
Used to render barcodes based on the BarCode-
Type and the value supplied via the DataField
property. The following symbologies are sup-
ported: Codabar, Code 128, Code 39, EAN-13,
EAN-8, FIM A,B,C, Interleaved 2 of 5, PostNet,
UPC-A, UPC-E.

 2D DBBarCode
Used to render two-dimensional barcode based on
the BarCode Type and the value supplied via the
DataField property. The following symbologies are
supported: PDF417, MaxiCode.

 DBTeeChart
Allows data-aware TeeCharts to be placed within a
report.

 DBCheckBox
Displays a checkbox based on the value of the field
specified in the DataField property. Can be used
with a Boolean field (or any other type of field via
the BooleanTrue, BooleanFalse properties).

 Region
Used to logically group components together. Use
the ShiftRelativeTo property to move the region in
relation to another dynamically resizing compo-
nent (such as Memo, RichText, or child-type Sub-
Report).

 SubReport
Used to handle multiple master details, create side-
by-side reporting effects, and hook reports together
as one. If you need a report to print within the con-
text of a band, use a child-type subreport. If you
need to hook reports together, use a section type
subreport. The PrintBehavior property determines
the subreport type.

 CrossTab
Used to present summarized data in a grid format.

 PageBreak
The TppPageBreak component is a report control
that allows the user to force a new page during
report generation. Placing a TppPageBreak compo-
nent on a report will cause all objects created after
the PageBreak (Z-Order) to be moved to the next
page in the report relative to the PageBreak object's
top position.

33Smart Layouts

REPORTBUILDER FUNDAMENTALS - MAIN
Smart Layouts

Overview
ReportBuilder allows you to create highly dynamic
report layouts. The SubReport, Memo, RichText,
and Region components have the ability to expand
or contract to accommodate the information they
contain. There are a host of properties designed to
keep your reports looking good in the variety of sit-
uations created by these dynamic components.

Anchors
Use Anchors to ensure that a report component
maintains its current position relative to an edge of
its parent control (i.e. Band/Region). When the
parent is resized, the component will hold its posi-
tion relative to the edges to which it is anchored.

StretchWithParent
Allows a shape or line to expand or contract based
on the change in height of the band or region in
which it is contained.

ShiftRelativeTo
Used to specify the vertical positioning that should
take place between multiple stretching components
in a band.

StopPosition (for subreports)
Used to set the position on the page where a child-
type subreport will stop printing. Allows a child-
type subreport to be confined to a rectangular area
of the page.

BottomOffset
Used to create white space between multiple
stretching objects that have been linked together
using the ShiftRelativeTo property.

OverFlowOffset
Controls the position where a stretching compo-
nent will begin printing when it overflows to addi-
tional pages. This property can be used to print an
object at a different starting position when it over-
flows onto additional pages.

ReprintOnOverFlow
Used to print non-stretching components when
stretching components are printing on additional
pages.

34 Smart Layouts

REPORTBUILDER FUNDAMENTALS - MAIN
One Memo in the Detail Band

Here we have a single memo component in the
detail band. The memo's Stretch property has been
set to True. Each time the detail band prints, the
height of the memo is recalculated based on the
amount of text it contains. As a result, the memo
may either grow or shrink in size and the detail
band will grow and shrink with it. The memo may
contain so much text that it cannot fit on a single
page. In this case, the memo will print on addi-
tional pages until it is complete. In ReportBuilder,
this condition is referred to as overflow. Both the
memo and band components have a boolean Over-
Flow property which can be checked while the
report is generating to determine if the memo is
printing on an additional page.

One Memo with a Shape Background

Here we have a single memo in the detail band
with a shape behind it. The shape has the Stretch-
WithParent property set to True. The parent, in
this case, is the detail band. When the band gener-
ates, the memo will stretch based on the text it con-
tains; the band will resize to accommodate the
memo, and the shape will resize based on the
change in height of the band. This stretching and
resizing creates the effect of a border and back-
ground for the memo. If the memo overflows onto
additional pages, we can also instruct the shape to
print by setting the shape's ReprintOnOverFlow
property to True.

35Smart Layouts

REPORTBUILDER FUNDAMENTALS - MAIN
One Memo with Label Beneath

Here we have a single memo in the detail band
with a label below it. The label has the ShiftWith-
Parent property set to True. The parent, in this
case, is the detail band. When the band generates,
the memo will stretch and the band will increase or
decrease in height accordingly. The label will shift
based on the change in height of the band.

Two Stacked Memos in the Detail Band

This report requires two memos to be printed, one
after the other. This requirement is met by setting
the ShiftRelativeTo property of the second memo
so that it points at the first. With this configura-
tion, the first memo will print, stretching to accom-
modate the text it contains, and then the second
memo will print to completion.

36 Smart Layouts

REPORTBUILDER FUNDAMENTALS - MAIN
Two Side-by-Side Memos with Labels
Below

Here we have two memos in the detail band, each
set to stretch. When the report generates, the band
will grow or shrink to accommodate the memo that
contains the most text. Each memo has an associ-
ated label below it. We want the labels to shift in
relation to the memo above. In order to accom-
plish this, we place the labels in a region and then
set the region's ShiftRelativeTo property to point at
the memo above. Now when the report is gener-
ated, each label shifts in relation to the associated
memo.

Child SubReports in Fixed Positions

This report emulates a form that contains informa-
tion in fixed rectangular areas of the page. We can
get the report to 'fill out' this form by placing child-
type subreports at the beginning of each rectangu-
lar area and setting the StopPosition property equal
to the bottom of the rectangular area.

37Smart Layouts

REPORTBUILDER FUNDAMENTALS - MAIN
One Memo with Two Side-by-Side
Memos Below

In this report we have a single stretching memo
that needs to print to completion, then two addi-
tional memos need to print, starting immediately
after the first. We can achieve this effect by plac-
ing the additional memos in a region and setting
the region's ShiftRelativeTo property to the first
memo.

39SubReports

REPORTBUILDER FUNDAMENTALS - MAIN
SubReports

Overview
In traditional banded-style report writers, reports
that can be printed from a single source of data are
quite easy to create. But if the content of the report
consists of information from several different
sources of data, the choices become quite limited.
One option is to use SQL to join the data together
into one virtual table, and then build the report
based on this table. If many tables are involved,
the performance of this approach can be prohibi-
tive.

Delphi provides an alternative to this approach by
allowing linkages to be established between data
access objects. Within ReportBuilder we can use
free-form subreports to take advantage of the many
configurations these data access objects make pos-
sible.

Single Dataset

A single dataset can be connected directly to the
report via the DataPipeline property. When
printed, the report will generate one detail band for
each record provided by the dataset.

40 SubReports

REPORTBUILDER FUNDAMENTALS - MAIN
Master Dataset with Single Detail
Dataset

In this scenario, the master data is connected to the
detail data via a field or set of fields. It is assumed
that this connection results in multiple detail
records being selected for each individual master
record. The master data is assigned to the report,
and the detail data is assigned to a subreport.
When the report is generated, the main report will
traverse all customer records and the subreport will
traverse all orders for each customer.

Master Dataset with Nested Detail
Datasets

Here we have the master dataset containing a list of
customers. Each customer has multiple orders;
each order has multiple products; and each product
has multiple potential vendors. This configuration
is called 'nested' because each set of records is
selected based on the linkage established with the
previous dataset.

We can traverse this data configuration by nesting
subreports in the detail band. The customer dataset
is assigned to the main report. The order dataset is
assigned to a subreport in the detail band of the
main report. The product dataset is assigned to a
subreport in the detail band of the product subre-
port, and so on. In this way, the report is con-
structed to match the data, and each dataset has a
full layout that can be used to render its contents.

41SubReports

REPORTBUILDER FUNDAMENTALS - MAIN
Master Dataset with Multiple
Independent Datasets

Here we have the order table. Each order has many
order items. For each order, there is also a group of
vendors that can supply the products for that order.
Both of these datasets are linked to the master
dataset, as opposed to being nested within one
another; therefore, the datasets are 'independent.'
This type of data can be handled by placing two
subreports in the detail band. The first subreport
can be linked to the order item dataset, and the sec-
ond subreport can be linked to the vendor dataset.
In order to print the vendor data after the order item
data, we need to link the vendor subreport to the
order item subreport via the ShiftRelativeTo prop-
erty.

Independent Datasets

Here we have three sources of data with no linkage
between them. In this report, we want to print all
of the customers, then all of the products, and then
all of the vendors. The report needs to fit together
like a book, with each dataset providing a chapter.
Here we use the main report to launch a subreport
for each of the datasets. The subreports would be
set with a PrintBehavior of section, which means
that each subreport would start a new page, gener-
ate a set of pages as necessary to traverse all of the
data, and then return control to the main report.
The main report is not connected to any dataset,
and so will print only a single detail band.

43Form Emulation

REPORTBUILDER FUNDAMENTALS - MAIN
Form Emulation

Overview
Form emulation is the process of taking a paper-
based or electronic form and rendering a likeness
of it. The likeness may include formatting of the
form itself, or it may only contain the data that will
'fill-out' the form. There are two basic issues that a
form emulation solution must resolve:

1 How will the formatting of the form be gener-
ated?

2 How will the data that fills-out the form be gen-
erated?

The first issue is resolved by using either a page-
sized band within the report or by utilizing a page
style. A page style can be designed just like a
band, but generate as a background to the bands of
the report.

The second issue is resolved by either using simple
data-aware components or by using more complex
region or subreport components.

In ReportBuilder, there are several approaches that
can achieve form emulation. These approaches are
discussed in detail in this section.

Single Page Forms
Single page forms can be emulated in several
ways:

1 Expand the detail band to the printable height of
the page, hide the header and footer bands, and
place all form formatting and data-aware controls
in the detail band. This approach yields one form
per record. The following diagram shows an entire
form in the detail band.

2 Add a page style to the report. Place all format-
ting for the form in the page style. Place the data-
aware controls in the bands as you would when
building a normal report. This approach yields a
variable number of records per form, depending on
the height of the bands. In this approach, the detail
band is used to fill-out the form. The following
diagram shows how a detail band can fill-out a
page style.

44 Form Emulation

REPORTBUILDER FUNDAMENTALS - MAIN
3 Expand the detail band to the printable height of
the page. Hide the header and footer band, and
place all form formatting in the detail band. Place
child-type subreports in different areas of the form
where a table or particular source of data is needed
to fill-out that part of the form. Place data-aware
components in areas of the form where the main
data pipeline supplies the data. This placement
yields the most flexible and powerful form emula-
tion solution, but is only needed when multiple
datasets are used. The following diagram shows
subreports filling out a form in the detail band.

The form itself may be too complex to recreate
using report components. In this case, it is recom-
mended that you scan the form and convert it to a
windows metafile. You can then place the win-
dows metafile in the report as a background for the
detail band, or you can place it in the page style,
where it will function naturally as a background for
the report.

When you have a form in a WMF image, the end
user gets an excellent print preview capability. If
you are printing on pre-printed forms, you can set
the visible property to False when the report is sent
to the printer. In this way you can provide a filled-
out form in the print preview window, but only the
text necessary to fill-out the form is actually sent to
the printer.

You can convert a scanned form to a windows
metafile image (WMF) via a product such as
Transform Suite, by MIPS.

45Form Emulation

REPORTBUILDER FUNDAMENTALS - MAIN
Multi-Page Forms
All of the approaches discussed in the single page
form topic are applicable to multi-page forms. The
additional problem of organizing single-page
forms into sets of multi-page forms can be resolved
using section style subreports. When section-style
subreports are rendered, they generate a new page
within the parent report, continue generating pages
until all data has been traversed (or they are
stopped manually through a procedure call to the
report engine), and then return control to the parent
report. One special behavior of section-type subre-
ports is that the parent report generates no pages
when the section is placed in a dynamic-height
detail band. In this case, the main report is used as
a launching pad for sections. Since each section is
a full-fledged report in its own right, all of the sin-
gle page form approaches can apply to each sec-
tion, thus creating a multi-page form solution.

The diagram below shows three section-type sub-
reports in the detail band of the main report. The
main report is assigned to a data pipeline, so the
detail band will print once for each record. The
subreports contain data-aware controls that point at
this data pipeline. This report provides three pages
of content for each record, and each page has its
own unique format.

REPORTBUILDER FUNDAMENTALS - DATA

DATA

Introduction 49

Database Support53

Database Alternatives55

Text Files 57

Delphi Objects 59

Native Access to Proprietary Data 61

49Introduction

REPORTBUILDER FUNDAMENTALS - DATA
DATA

Introduction

Overview
In ReportBuilder, data access is provided via the
data pipeline component. ReportBuilder includes
data pipelines for accessing data from a variety of
sources.

BDEPipeline
Retained for backward compatibility. Use the
DBPipeline for new applications.

DBPipeline
Used to access data via a TDataSet descendant.
Supports ADO, BDE, dbExpress, IBExpress and
third party datasets such as DBISAM, DOA, Nex-
usDB, etc.

TextPipeline
Used to access data in ASCII text files.

JITPipeline
Just-In-Time pipeline for accessing data in Delphi
objects.

Regardless of the type of pipeline or the type of
data being accessed, the data pipeline component
has two basic purposes:

1 To supply data

2 To control data traversal

Supplying Data
Data pipelines provide data via fields. For
instance, the following code would retrieve the
current field value of a field called 'Company':

lValue := DataPipeline1 ['Company'];

Each time a data-aware report component prints, it
uses this approach to retrieve the data from the data
pipeline. Data-aware report components have two
properties that determine the data they will
retrieve: DataPipeline and DataField. Once these
two properties are assigned, the data-aware compo-
nent has the ability to retrieve data directly from
the data pipeline, independent of the report in
which the data-aware component resides.

50 Introduction

REPORTBUILDER FUNDAMENTALS - DATA
Controlling Data Traversal
The second purpose of the data pipeline is to con-
trol data traversal. Data traversal is the act of mov-
ing from the first record of the data to the last
record. When a report is printed, the report engine
traverses the data by completing the following
steps:

1 Opens the data pipeline.

2 Goes to the first record.

3 Begins printing the page and then gives the
detail band the opportunity to print.

4 Goes to the next record.

5 Gives the detail band the opportunity to print.

6 Continues steps 4 and 5 until there is no more
page space.

7 Completes the page.

8 Continues steps 4 through 7 until all records
have been exhausted.

It is important to note that when the detail band is
given the opportunity to print, the data-aware com-
ponents within the detail band are rendered; at this
point, they retrieve the field value of the current
record. The engine then moves to the next record
and prints the detail band again. It is this combina-
tion of the report traversing the data and the data-
aware components retrieving the data that creates
the pages of the report. If the data pipeline is not
assigned to either of these entities (data-aware

component or report), then the report will not
work. Therefore, the report must be assigned to a
data pipeline and each data-aware component must
be assigned to a data pipeline and a datafield.

We've said that the report engine traverses the data.
That isn't completely true. The report engine
makes requests of the data pipeline (such as open,
first, next, last), and then relies on the data pipeline
to do the work. Therefore, the data pipeline con-
trols the data traversal. This control can be used to
great advantage.

For instance, let's say you are displaying a database
grid on a form. The user has selected an individual
record of the grid and wants to print that record. If
you have a data pipeline pointed at the same data
source as the grid, then it can access

51Introduction

REPORTBUILDER FUNDAMENTALS - DATA
all of the records. However, we can instruct the
data pipeline to traverse only the current record by
simply setting the RangeBegin and RangeEnd
properties to CurrentRecord. When the report
prints, it will send traversal requests to the data
pipeline, and the data pipeline will traverse only
one record. It will then inform the report engine
that all records have been traversed and the report
will print only one record.

Let's take this example further and say that you let
the user select multiple records from the database
grid. You then want the report to contain only the
selected records. In this case we can assign the
Bookmarks from the grid using the AddBookmark
method of the data pipeline. When the report
prints, the data pipeline will traverse only those
records that are in the list of bookmarks and only
those records will appear in the report. Essentially,
the engine makes the same traversal requests of the
data pipeline for every report, but it is the data
pipeline that controls how the data is actually tra-
versed.

53Database Support

REPORTBUILDER FUNDAMENTALS - DATA
Database Support

Overview
Delphi has a strong architecture for database
access. While early versions of Delphi relied upon
a properietary technology called the BDE (Borland
Database Engine), Borland later re-designed the
data access class library to be open and extensible.
Today Delphi includes data access components
that support a number of different technologies
including BDE, ADO, IBExpress, and dbExpress.
In addition, a large number of third-party data
access solutions are available and in wide use.

ReportBuilder fully leverages the power and flexi-
bility provided by Delphi's data access architec-
ture. Thus you have the freedom to pick and
choose the data access solution that best suits the
requirements of your customers and applications.

Data Access
In Delphi, the TDataSet class is the abstract base
class for all dataset components that represent data
in rows and columns. Each type of connectivity,
such as BDE, ADO, etc. includes one or more
dataset descendants that are installed to the Delphi
component palette and can be used in your applica-
tions.

Data-aware controls are typically connected to a
dataset via a TDataSource component. The follow-
ing screen-shot shows a field value being retrieved
into a data-aware memo component. In this exam-
ple, a DBMemo is connected to TDataSource
which is connected to TTable component. (The
TTable component is a TDataSet descendant class
provided by the BDE class library.)

54 Database Support

REPORTBUILDER FUNDAMENTALS - DATA
ReportBuilder augments this data access model by
adding another component: the data pipeline.
There are several types of data pipelines, but for
the purposes of connecting to a dataset, a DBPipe-
line component is used. The following screen
shows a DBPipeline retrieving the same field
value.

The value is displayed in a ReportBuilder data-
aware memo component. You may notice that
only the first line of the memo is shown in the
ReportBuilder Report Designer. This is due to the
fact that when the report generates, the memo com-
ponent will recalculate the height based on the text
it contains. Therefore, there is no reason to specify
the height of the memo in the report layout, as it
will automatically resize on the generated page.

55Database Alternatives

REPORTBUILDER FUNDAMENTALS - DATA
Database Alternatives

Overview
ReportBuilder fully leverages the power and flexi-
bility provided by Delphi's data access architec-
ture. Thus you have the freedom to pick and
choose the data access solution that best suits the
requirements of your customers and applications.
Some of the more popular data access solutions
used by our customers are listed below.

ADO
Included with Delphi. Used to connect to MS SQL
Server and MS Access

IBExpress
Included with Delphi. Used to connect to Interbase
and Firebird.

DBExpress
Included with Delphi. Used to connect to a number
of different database products. dbExpress has a
driver based architecture that can be extended to
support any database. Delphi includes a default set
of dbExpress drivers, and third-party dbExpress
drivers are increasingly available.

Direct Oracle Access (DOA)
by Allround Automations

Used to connect to Oracle.

mySQLDAC
by MicrOLAP

Used to connect to mySQL.

Advantage
by iAnywhere

Used to connect to Advantage Database Server.

DBISAM and ElevateDB
by Elevate Software

Native Delphi database products that can be
embedded in applications.

NexuxDB
by Nexus Database Systems

Native Delphi database product that can be embed-
ded in applications.

57Text Files

REPORTBUILDER FUNDAMENTALS - DATA
Text Files

The TextPipeline Component
Reports can be printed directly from text files with-
out using a database product. This functionality is
provided via the TextPipeline component.

The following formats are supported:

• Comma-delimited

• Tab-delimited

• Fixed-Length records

• Custom-delimited (where you specify the delim-
iter)

The TextPipeline component is essentially a simple
data retrieval engine that enables you to access data
in text files in the same manner as data stored in a
database table. You can even define master/detail
relationships between data in two text files. The
TextPipeline contains a Field Editor that is used to
define the data fields for the text file. Once the
data fields have been defined, you can access the
Report Designer and assign those fields to Report-
Builder's data-aware components.

The Field Editor
Each of the data pipelines in ReportBuilder has a
Field Editor that is accessible by double-clicking
on the pipeline component at design-time. The
TextPipeline's Field Editor is pictured below.
Notice that the View Data button has been acti-
vated to display the contents of the text file. This
feature can be a useful aid when defining the fields
for the text file.

59Delphi Objects

REPORTBUILDER FUNDAMENTALS - DATA
Delphi Objects

Overview
Data pipelines present a structured set of data to a
report. This structure takes the form of records and
fields. The report engine expects operations like
open, first, next, and last to provide a certain
response from the data pipeline. The data-aware
components within the report expect field values to
be retrievable by simply passing a field name to the
data pipeline. In the DBPipeline component, this
functionality is implemented by calling the meth-
ods of a TDataSet object. However, this is not the
only way a data pipeline can provide the necessary
data access functionality to a report. The JITPipe-
line (JIT stands for Just-In-Time) triggers events to
accomplish the same results as the DBPipeline.

JITPipeline
The JITPipeline provides a set of events that, when
coded properly, allow reports to print from any
source of data referenced by the event handlers.
The following diagram shows a JITPipeline that is
assigned to event handlers referencing a standard
Delphi string grid. In the report, data-aware com-
ponents are created just as they would be for any
other database report - by assigning field names
from the JITPipeline to the data-aware controls in
the report. This results in a clean, maintainable
implementation. If you later decide to provide data
to the report via a text file or database table, you
can simply swap out the JITPipeline with a new
pipeline of the correct type.

61Native Access to Proprietary Data

REPORTBUILDER FUNDAMENTALS - DATA
Native Access to Proprietary Data

Overview
If you have a considerable amount of data in a pro-
prietary format, and many reports need to be cre-
ated based on this data, the highest level of
maintainability and ease of use will be provided by
a custom data pipeline component. This type of
component can be created by descending from the
TppCustomDataPipeline class and implementing
the necessary methods. The end result of such an
effort will be a new data pipeline component that
can be installed into the Delphi IDE and used on
the same basis as the other data pipelines that are
provided with ReportBuilder. The object model
for the ReportBuilder DataPipeline classes is
shown below:

REPORTBUILDER FUNDAMENTALS

CODE

The Delphi Event Model 65

Dynamic Configuration 67

Performing Calculations 73

Creating Reports in Code 83

65The Delphi Event Model

REPORTBUILDER FUNDAMENTALS - CODE
CODE

The Delphi Event Model

Overview
In the context of Delphi components, events have
two fundamental qualities:

1 Events fire as the logical result of an action
taken on or by a component.

2 Events fire at a moment when a meaningful
action can be taken.

Significance
An event is something that happens as the logical
result of an action taken on or by a component. For
instance, an action taken on a button control is a
mouse-click. In response, a TButton control will
fire its OnClick event. An example of an action
taken by a component would be the Next method
of a TTable. When this method is called, the
OnCalcFields event (among others) fires.

Timing
Events fire at a moment when a meaningful action
can be taken. In the case of a TButton.OnClick
event, the meaningful action would be the one
intended by the developer as the basic purpose of
the button. This purpose might be to launch
another window or close the current form. But not
every action is appropriate within the context of the
event. It would certainly not be appropriate to free
the button in the OnClick or to call the OnClick
event handler from within itself. These calls might
be OK for other events of the application, but not
within the context of the OnClick event.

ReportBuilder Events
In ReportBuilder, a report definition is comprised
of a set of objects: Report.Bands[].Objects[] in
which each band represents a rectangular region of
the page that contains Lables, DBText, Lines,
Images, etc. The report and each sub-elements is an
object with a rich set of properties and events. The
ReportBuilder help file contains reference informa-
tion about each property and event. Many of the
demos installed with the product contain show how
to use the events to control report generation. Here
are some broad guidelines.

Report.OnIntializeParameters
This event fires whenever a report is generated via
a call to the Print method. It is the first event to fire.
Use this event to initialize Report.Parameters[] and
Report.AutoSearchFields, display a custom dia-
log, or initialize a SQL query.

Report.BeforeOpenDataPipelines
BeforeOpenDataPipelines fires prior to the report
engine opening the datapipelines associated with
the report, child reports, and data-aware controls.
Use this event to apply custom parameter values to
SQL or generate custom SQL.

66 The Delphi Event Model

REPORTBUILDER FUNDAMENTALS - CODE
Band.BeforePrint
Use the BeforePrint event of a band to perform
actions that determine what prints. For example to
set the Visible property of the band or the Visible
property of objects contained within the band.

Variable.OnCalc
Use the Variable OnCalc event to perform calcula-
tions.

Note: Once the report starts generating, do not use
event-handlers to manipulate the underlying data
associated with the report in any manner.

67Dynamic Configuration

REPORTBUILDER FUNDAMENTALS - CODE
Dynamic Configuration

Configure Reports During Generation
When we talk about configuring a report while it is
generating, we mean anything from setting the cap-
tion of a label to conditionally controlling the visi-
bility of an entire subreport. Always keep in mind
that ReportBuilder reports are comprised of a col-
lection of objects: Report.Bands[].Objects[]. The
report object is the parent of a collection of band
objects. Each band object represents a rectangular
area of the page and contains a collection of print-
able objects such as text, images, and memos. All
of these objects have properties and events. The
events fire while the report is generating, thus
enabling us to manipulate the properties and con-
trol the behavior of the report.

In order to get a hands-on feel for how this really
works, let's code some event handlers that will give
you an idea of what can be done while a report is
generating.

Font Color
The event handler below is assigned to the OnPrint
event of a DBText component. When the compo-
nent prints, the current value of the PRICE_CHG
field is checked. If this value is less than zero, the
component prints in red; otherwise, the component
prints in black.

It is important to note that the font color is set to
the appropriate color every time the component
prints. If the code below simply set the font color
to red when the value was negative, then the first
negative value would print in red and all subse-
quent values would print in red, regardless of the
sign of the value. When setting report component
properties, remember to handle all cases, as com-
ponents remain in any state to which they are set.

Code Setting the color of a numeric DBText component based on the sign

procedure Form1.ppDBText4Print(Sender: TObject);
begin

if(DBPipeline1['PRICE_CHG'] >= 0)
then

ppDBText4.Font.Color := clBlack
else

ppDBText4.Font.Color := clRed;
end;

68 Dynamic Configuration

REPORTBUILDER FUNDAMENTALS - CODE
Concatenation
This event handler is assigned to the OnPrint event
of a Label component. When the component
prints, the current value of the FirstName and Last-
Name fields are retrieved. If the FirstName has a
length greater than zero, it is included in the cap-
tion. The local variables used here are prefixed
with 'ls', which stands for local string.

Code Using a label to display concatenated field values

procedure TForm1.ppLabel3Print(Sender: TObject);
var

lsFirstName: String;
lsLastName: String;

begin
lsFirstName := DBPipeline1['FirstName'];
lsLastName := DBPipeline1['LastName'];

if (Length(lsFirstName) > 0) then
ppLabel3.Caption := lsFirstName + ' ' + lsLastName

else
ppLabel3.Caption := lsLastName;

end;

69Dynamic Configuration

REPORTBUILDER FUNDAMENTALS - CODE
Address Squeeze
The BeforePrint event of a band is an acceptable
place to configure any component within the band.
Placing several different component configuration
steps in a band-level event handler can make for
more maintainable code (as opposed to placing the

code in the OnPrint of each component). This
event handler retrieves the appropriate field values
from a database table, concatenates them in a local
string variable, and then adds this variable as a line
to the memo.

Code Using a memo to create dynamically sized address information
procedure TForm1.ppReport1DetailBand1BeforePrint(Sender: TObject);
var

lsLine: String;
lsState: String;
lsZIP: String;

begin
{clear memo}
ppMemoAddress.Lines.Clear;

{add contact}
lsLine := DBPipeline1['Contact'];

ppMemoAddress.Lines.Add(lsLine);

{add company}
lsLine := DBPipeline1['Company'];

ppMemoAddress.Lines.Add(lsLine);

{add address line1}
lsLine := DBPipeline1['Addr1'];

if lsLine <> '' then
ppMemoAddress.Lines.Add(lsLine);

{add address line2}
lsLine := DBPipeline1['Addr2'];

if lsLine <> '' then
ppMemoAddress.Lines.Add(lsLine);

{add city, state zip}
lsLine := DBPipeline1['City'];
lsState := DBPipeline1['State'];

if lsState <> '' then
 lsLine := lsLine + ', ' + lsState;

lsZIP := DBPipeline1['ZIP'];

if lsZIP <> '' then
lsLine := lsLine + ' ' + lsZIP;

ppMemoAddress.Lines.Add[lsLine];

{add country}
lsLine := DBPipeline1['Country'];

ppMemoAddress.Lines.Add(lsLine);

end;

70 Dynamic Configuration

REPORTBUILDER FUNDAMENTALS - CODE
 Continued Group
This event handler is attached to the OnPrint event
of a label in the detail band of the report. The 'if'
statement checks to see if this is the first page of
the group and the first detail band of the page. If it
is not the first page of the group, the group is print-
ing on additional pages. In this case, the label is
made visible. The label's caption is set to 'Contin-
ued...'; this creates the effect of labeling detail lines
that print on additional pages for the same group.

Code Placing a ’Continued...’ label in a detail band

procedure TForm1.ppLabelContinuedPrint(Sender: TObject);
begin

if not(ppReport1.Groups[0].FirstPage) and

(ppReport1DetailBand1.Count = 1) then
ppLabelContinued.Visible := True

else
ppLabelContinued.Visible := False;

end;

71Dynamic Configuration

REPORTBUILDER FUNDAMENTALS - CODE
Regions
The group header band in this report contains two
regions. One region contains a detailed set of data;
the other region contains a more summarized set of
the same data. On the first page of the group, the
detailed set of data (in region 1) is displayed. If the
group continues onto additional pages, the more
summarized version of the data (in region 2) is dis-
played. The FirstPage property of the group is
used to determine if the report is on the first page
or additional pages of the group. In the report lay-
out, Region 2 has been placed to the right of
Region 1 in order to make the report layout easier
to maintain. Therefore, the first time Region 2 is
displayed, it must be moved into the same position
as Region 1.

Code Controlling components using regions

procedure TForm1.ppGroupHeaderBand1BeforePrint(Sender: TObject);
begin

if ppGroup1.FirstPage then
begin
ppRegion1.Visible := True;
ppRegion2.Visible := False;

end
else

begin
ppRegion1.Visible := False;
ppRegion2.Visible := True;

if (ppRegion2.Left <> ppRegion1.Left) then
ppRegion2.Left := ppRegion1.Left;

end;
end;

72 Dynamic Configuration

REPORTBUILDER FUNDAMENTALS - CODE
SubReports
This event handler is associated with a master/
detail report. The report contains a subreport that
prints the detail. This report resides on a form with
a button captioned 'Hide Detail'. When the button
is clicked, the event handler toggles the value of
the subreport's visible property and then prints the
report. As a result, the report is either a high-level
summary or a full-detail listing; thus, the report
provides the functionality of two reports from only
one layout.

Code Controlling the visibility of a subreport

procedure TfrmShowHideDetail.btnDetailClick(Sender: TObject);
begin

ppSubReport1.Visible := not(ppSubReport1.Visible);

if (ppSubReport1.Visible) then
btnDetail.Caption := 'Hide Detail'

else
btnDetail.Caption := 'Show Detail';

ppReport1.Print;

end;

73Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Performing Calculations

Overview
Calculations are a vital part of reporting, and
ReportBuilder provides a rich set of components
and events that allow you to perform a wide range
of calculations. Simple calculations can be per-
formed without any coding via the DBCalc compo-
nent. This component provides Sum, Average,
Minimum, Maximum, and Count functions. The
calculations can be group-based or report-based.
More complex calculations can be achieved via the
Variable component. At a minimum, the Variable
component requires an OnCalc event handler to be
assigned. The timing of this event can be corre-
lated to any number of occurrences within the
report generation process. For example, the com-
ponent can calculate once for each of the following
occurrences: the start of the report, a record tra-
versal, a group break, the start of a page, and the
start of a column. The Variable component also
has an OnReset event that can be similarly corre-
lated. This provides the utmost in calculation flex-
ibility.

DBCalc component
The DBCalc component:

• Performs simple calculations without any coding

• Provides Sum, Average, Minimum, Maximum
and Count functions

• Performs calculations that can be group-based or
report-based

Variable component
The variable component:

• Requires an OnCalc event handler to be assigned

• Contains properties to control the timing of the
OnCalc and OnReset events

• Contains a CalcOrder property to control the
ordering of calculations

74 Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Count
To number the detail bands, place a DBCalc com-
ponent in the detail band of a report. Right-click
over the component and select the Calculations...
menu item. A dialog will be displayed. Set the
calculation type to Count and click OK. When you
return to the Report Designer, the DBCalc will
contain this caption: 'Count(*)'. There is no need
to select an individual field for the DBCalc because
the Count function does not require one. Preview
the report. Each detail band will be numbered as
shown below.

Using a DBCalc component to number the detail band

 Design View

 Preview

75Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Count Master/Detail
A master/detail report usually contains a group
based on the key field in the master table. This
allows the fields from the master table to be printed
in the group header, as opposed to repeating in the
detail band. In order to count the master records,
place a DBCalc in the group header band and set
the CalcType to count. Then access the Calcula-
tions... dialog and clear the Reset Group setting.
The ResetGroup is automatically assigned when a
DBCalc is placed in a group band. When set, this
property causes the DBCalc to reset to zero each
time the group breaks. Here we want to count each
group (not reset to zero when each group breaks)
and so we clear this assignment.

Next, place a DBCalc component in the subreport's
detail band and set the Calc Type to count. When
the report is previewed, the master records and the
detail records will be numbered as shown below

Using a DBCalc component to number the master and detail records

Design View Preview

76 Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Group Total
Report group totals can be easily calculated by
placing a DBCalc in the group footer band. The
ResetGroup is automatically assigned when a
DBCalc is placed in a group band. Thus, each time
the group breaks, the group total will reset to 0.

Using a DBCalc component to number the master and detail records

Design View Preview

77Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Grand Total
To calculate a grand total, add a summary band to a
report and place a DBCalc in the summary band.

Using a DBCalc component to calculate a grand total

Design View

Preview

78 Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Cumulative Sum
To calculate a cumulative sum in the detail band,
add a DBCalc in the detail band and assign it to the
appropriate data pipeline and field.

Using a DBCalc component to calculate a cumulative sum in the detail band

Design View

Preview

79Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Conditional Group Total
When you need to exclude certain values from a
group total, add a Variable component to the group
footer band. Access the Timing dialog and set the
'Calculate On' to DataPipeline Traversal, select the
appropriate Data Pipeline, then set 'Reset On' to
Group Start and select the appropriate group. Code
the OnCalc event handler as:

This event handler will accumulate the value of the
variable only when the amount paid is greater than
$5,000.

procedure TForm1.ppVariable1Calc(Sender: TObject; var Value: Variant);
var

lcValue: Currency;

begin
lcValue := Table2.FieldByName('AmountPaid').AsCurrency;

if (lcValue >= 5000) then
Value := Value + lcValue;

end;

Using a variable to exclude certain values from a group total

Design View Preview

80 Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Conditional Grand Total
To exclude certain values from a grand total, add a
Variable component to the summary band. Then
code the OnCalc event handler as:

This event handler will accumulate the value of the
variable only when the amount paid is greater than
$5,000. The screen shot below shows the result.
Notice that this report also has a conditional group
total in the group footer band.

Procedure TForm1.ppVariable2Calc(Sender: TObject; var Value: Variant);
var

lcValue: Currency;

begin
lcValue := Table2.FieldByName('AmountPaid').AsCurrency;

if (lcValue >= 5000) then
Value := Value + lcValue;

end;

Using a variable to exclude certain values from a grand total

Design View Preview

81Performing Calculations

REPORTBUILDER FUNDAMENTALS - CODE
Look Ahead Total
ReportBuilder has the flexibility to operate as a
one pass or two pass report engine. This example
shows how to calculate group totals so that they
can be displayed in the group header.

1 Create a group.

2 Place a DBCalc component in the group header
band.

3 Right-click and set the LookAhead property to
True.

4 Preview. The total prints before the detail.

Using a DBCalc and a variable to display a group total at the beginning of a group

Design View Preview

83Creating Reports in Code

REPORTBUILDER FUNDAMENTALS - CODE
Creating Reports in Code

Coding a Report
A report layout is composed of a set of compo-
nents. Like other standard Delphi components, the
components that make up a report layout have a
run-time interface. That is, they can be created and
configured using Object Pascal code. This capabil-
ity can be used to create entire reports dynamically.
Take these steps to create a report dynamically:

1 Create data access components.

2 Create the report.

3 Create the report bands.

4 Add data-aware components.

5 Add formatting components.

These are the same steps you would follow to cre-
ate a report using the Delphi IDE and the Report-
Builder Report Designer. Creating the components
manually requires some additional knowledge of
how the different parts of the report fit together.
The following discussion steps you through the
actual code necessary to build a simple report.

1 Declare the necessary uses clause.

uses

DB, {contains TDataSource}
DBTables, {contains TTable}
ppReport, {contains TppReport}
ppDBBDE, {contains TppBDEPipeline}
ppBands, {contains all band classes}
ppCtrls, {contains standard components}
ppTypes, {contains all ReportBuilder

enumerated types}
ppVar; {contains SystemVariable and

Variable classes}

The types that are being used from each unit are
documented in the comments of this code.

2 Declare the local variables necessary to create
the report.

procedure TForm1.Button1Click(Sender:
TObject);

var
lTable: TTable;
lDataSource: TDataSource;
lDataPipeline: TppBDEPipeline;
lReport: TppReport;
lLabel1: TppLabel;
lLabel2: TppLabel;
lDBText1: TppDBText;
lDBText2: TppDBText;
lSysVar: TppSystemVariable;

The prefix 'l' stands for local. This coding standard
makes local variables easily distinguishable from
component level variables (which are prefixed with
an 'F') and from proper component names (such as
'Report1').

3 Create data access components.

lTable := TTable.Create(Self);
lTable.Name := 'tblCustomer';
lTable.DatabaseName := 'DBDemos';
lTable.TableName := 'customer.db';
lDataSource := TDataSource.Create(Self);
lDataSource.Name := 'dsCustomer';
lDataSource.DataSet := lTable;
lDataPipeline := TppBDEPipeline.Create.
(Self);

lDataPipeline.Name := 'plCustomer';
lDataPipeline.DataSource := lDataSource;

These are standard Delphi data access components.
It is not necessary to assign the Name property of
these components; we've done this to give you an
idea of how they would be named if they were cre-
ated within the Delphi IDE.

84 Creating Reports in Code

REPORTBUILDER FUNDAMENTALS - CODE
4 Create the report.

lReport := TppReport.Create(Self);
lReport.DataPipeline := lDataPipeline;

The data pipeline assignment is vital here. Without
a data pipeline assigned, this report would generate
an endless number of pages.

5 Create the report bands.

lReport.CreateDefaultBands;

This method creates a header band, a detail band,
and a footer band. It is also possible to create the
bands individually and assign them to the report.
A report must always have a detail band in order to
generate properly.

6 Add labels to the header band.

lLabel1 := TppLabel.Create(Self);
lLabel1.Band := lReport.HeaderBand;
lLabel1.spLeft := 2;
lLabel1.spTop := 2;
lLabel1.Caption := 'Customer No.';
lLabel2 := TppLabel.Create(Self);
lLabel2.Band := lReport.HeaderBand;
lLabel2.spLeft := lLabel1.spLeft +
lLabel1.spWidth + 3;
lLabel2.spTop := 2;
lLabel2.Caption := 'Company Name';

These two labels will print at the top of each page.
The 'sp' in the spLeft and spTop properties refers to
screen pixels. All positional properties of the com-
ponents within a report are expressed in the units of
the report itself (i.e. the value of the Report.Units
property). Using the screen pixel version of these
properties allows us to size and position compo-
nents without concern for the current value of the
Unit property.

7 Add data-aware components to the detail band.

lDBText1 := TppDBText.Create(Self);
lDBText1.Band := lReport.DetailBand;
lDBText1.spLeft := lLabel1.spLeft;
lDBText1.spTop := lLabel1.spTop;
lDBText1.DataPipeline := lDataPipeline;
lDBText1.DataField := 'CustNo';
lDBText2 := TppDBText.Create(Self);
lDBText2.Band := lReport.DetailBand;
lDBText2.spLeft := lLabel2.spLeft;
lDBText2.spTop := lLabel2.spTop;
lDBText2.DataPipeline := lDataPipeline;
lDBText2.DataField := 'Company';

These components are positioned in the detail band
directly below their corresponding label compo-
nents.

8 Add a page number and timestamp to the footer
band.

lSysVar := TppSystemVariable.Create
(Self);

lSysVar.Band := lReport.FooterBand;
lSysVar.VarType := vtPrintDateTime;
lSysVar.spLeft := 2;
lSysVar.spTop := 2;
lSysVar := TppSystemVariable.Create.
(Self);

lSysVar.Band := lReport.FooterBand;
lSysVar.VarType := vtPageNoDesc;
lSysVar.Alignment := taRightJustify;
lSysVar.spLeft :=
(lReport.PrinterSetup.PageDef.spPrintableWidth
 -lSysVar.spWidth) -2; lSysVar.spTop := 2;

Notice how the second system variable component
is right-justified. The AutoSize property defaults
to True for system variables, so we need only to set
the Alignment property and component position.
Here we set spLeft so that the component is flush
with the right margin of the page (less 2 pixels for
spacing). Because it is right-justified, this compo-
nent will expand to the right when it prints. The
PrinterSetup.PageDef object contains all of the
dimensions of the page. The spPrintableWidth
property contains the width of the paper less the
left and right margins (in screen pixels).

85Creating Reports in Code

REPORTBUILDER FUNDAMENTALS - CODE
9 Preview the report.

lReport.Print;

The DeviceType property of a report defaults to
'Screen,' so calling print here causes the Print Pre-
view form to be displayed.

10 Free the report.

lReport.Free;

The ModalPreview property of the report defaults
to True; therefore, this line of code will only fire
after the Print Preview form has been closed. When
the report is freed, it will automatically free the
bands and components it contains.

11 Free the data access components.

lTable.Free;
lDataSource.Free;
lDataPipeline.Free;

The data access components are not freed by the
report, and so must be freed separately.

REPORTBUILDER FUNDAMENTALS

DESIGN

The Report Designer 89

Dialogs 91

Toolbars 95

Drag and Drop Support 105

The Report Wizard 107

89The Report Designer

REPORTBUILDER FUNDAMENTALS - DESIGN
DESIGN

The Report Designer

Design Tab
The design workspace is where the report layout is
created. This workspace contains all of the menus,
toolbars, and dialogs that make up the Report
Designer.

Preview Tab
The Preview workspace shows a representation of
the report as it will appear when printed to the
printer. The iterative process of perfecting a report
is generally accomplished by moving back and
forth between the Preview and Design tabs of the
Report Designer.

91Dialogs

REPORTBUILDER FUNDAMENTALS - DESIGN
Dialogs

Print Dialog
The Print Dialog is automatically displayed when
the report is sent to the printer, allowing you to
select the pages, number of copies, and printer for
the report. When the AllowPrintToFile or

AllowPrintToArchive properties of the Report are
set to True, this dialog displays additional print to
file options.

Print Dialog

1 The print job settings can be set via the standard
dialog.

2 Dialog with the print to file options.

92 Dialogs

REPORTBUILDER FUNDAMENTALS - DESIGN
Page Setup Dialog
The Page Setup dialog can be accessed from the
File | Page Setup menu option of the Report
Designer. You can set the following properties
from within the Page Setup dialog:

Print Dialog

1 Printer

2 Paper Size

4 Layout for Columnar Reports

5 Margins

3 Paper Source

93Dialogs

REPORTBUILDER FUNDAMENTALS - DESIGN
Groups Dialog
The Groups dialog is accessible via the Report |
Groups menu option of the Report Designer. You
can separate your report into different sections
using groups. A number of options are available to
control the behavior of each group. For example,
you may want each group to start on a new page or
to reprint the group header when the group contin-
ues on additional pages. Another powerful feature
is the Keep group together option, which can be
used to ensure that all of the information for a
group fits on a page.

Print to File Setup Dialog
The Print to File Setup dialog is accessible via the
File | Print to File Setup menu option of the Report
Designer. This dialog is used to specify the format
and content of the ASCII file that will be created if
the report is printed to file.

94 Dialogs

REPORTBUILDER FUNDAMENTALS - DESIGN
Data Dialog
The Data dialog can be accessed from the Report |
Data menu option of the Report Designer. It can
be used to specify the data pipeline for the report.

Grid Options
The Grid Options dialog is accessible via the View
| Grid Options menu of the Report Designer. Use
the Grid Options dialog to control how the work-
space grid is drawn and whether layout elements
automatically snap to the grid points.

Outline Settings
The Outline Settings dialog is accessible via the
Report | Outline Settings menu option of the
Report Designer. Use this dialog to control the
behavior of report outline generation. When
enabled, an outline tree structure is dynamically
generated by the report engine and rendered by the
report previewer.

Find Text Settings
The Find Text Settings dialog is accessible via the
Report | Find Text Settings menu option of the
Report Designer. Use this dialog to configure the
find text options used by the report previewer.
When enabled, the previewer can be used to find
and highlight text that appears in the pages of the
report.

95Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Toolbars

Overview
The various toolbars accessible from the design
workspace are documented in this section. The
toolbars are dockable and follow the Office inter-
face style. The toolbars are accessible from the
View | Toolbars menu option of the Report
Designer or by right-clicking on the docking area
at the top of the Report Designer.

The Report Tree
To access this tool window, select the View | Tool-
bars | Report Tree menu option from the Report
Designer main menu. This tool windows is dock-
able on the left and right sides of the Report
Designer. The top pane contains a tree view of the
Report.Bands[].Objects[] structure that comprises
the report layout. The elements in each band are
displayed in z-order. The bottom pane of the
Report Tree contains the Object Inspector which
can be used to view and modify properties of the
currently selected object.

The Data Tree
To access this tool window, select the View | Tool-
bars | Data Tree menu option from the Report
Designer main menu. This tool window is dock-
able on the left and right sides of the Report
Designer. It can be used to create components
within any band. Simply select a set of fields and
drag the selection into the band. A set of corre-
sponding data-aware components will be created.

96 Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Standard Component Palette
To access this toolbar, select the View | Toolbars |
Standard Components menu option from the
Report Designer main menu. This toolbar will
assist in creating the most commonly used report
components.

 Label
Displays text. Assign the Caption property to con-
trol the text value. You can have the label resize
automatically to fit a changing caption if you set
the AutoSize property to True.

 Memo
Prints multiple lines of plain text in a report. To set
the value, assign a string list to the Lines property.
To dynamically resize the memo during printing,
set the Stretch property to True. Use the ShiftRela-
tiveTo property to define dynamic relationships
with other stretchable objects.

 RichText
Prints formatted text. To set the value, assign the
RichText property or use the LoadFromFile
orLoadFromRTFStream methods. Use the
ShiftRelativeTo property to define dynamic rela-
tionships with other stretchable objects. At design-
time you can use the ReportBuilder's built-in RTF
Editor to load, modify, and save rich text data
stored in files.

 SystemVariable
Displays common report information such as page
number, page count, print date and time, date, and
time. The type of information displayed is con-
trolled by the VarType property. The format is
controlled by the DisplayFormat property.

 Variable
Used for calculations via an Object Pascal event
handler assigned to the OnCalc event or a RAP
event handler assigned to the OnCalc event.
Access the Calculations dialog (via the speed
menu) or the Calc tab of the Report Designer to
code a RAP calculation for this component.

 Image
Displays bitmaps and windows metafiles in
reports. Assign the Picture property of this compo-
nent in order to place an image in your report. Use
the Report Designer's built-in picture dialog to load
images at design-time.

 Line
Displays single and double lines (either vertical or
horizontal.) Set the Style property to control
whether the line is single or double. Set the Weight
property to control the line thickness in points. Set
the Position property to control whether the line is
vertical or horizontal.

 Shape
Prints various shapes (squares, rectangles, circles,
ellipses). Set the Shape property to select a type of
shape. Use the Brush and Pen properties to control
the color and border respectively.

 TeeChart
Displays standard (non-data-aware) TeeCharts.
This component enables you to use TeeCharts
inside the Report Designer. You can access the
TeeChart editor via a popup menu.

97Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
 BarCode
Renders barcodes. The string value assigned to the
Data property is encoded based on the BarCode-
Type. If the data to be encoded is in a database,
use DBBarCode. The following symbologies are
supported: Codabar, Code 128, Code 39, EAN-13,
EAN-8, FIM A,B,C, Interleaved 2 of 5, PostNet,
UPC-A, UPC-E.

 2DBarCode
Renders 2D BarCodes. The string value assigned
to the Data property is encoded based on the Bar-
Codetype. The following symbologies are sup-
ported: PDF417, Maxicode.

 CheckBox
Displays a checkbox using the WingDings font.

Data Component Palette
To access this toolbar, select the View | Toolbars |
Data Components menu option from the Report
Designer main menu. This toolbar will assist in
creating data-aware report components.

 DBText
Displays values from all types of database fields.
Use the DisplayFormat property to format the
value.

 DBMemo
Prints plain text from a memo field of a database
table. This control will automatically word-wrap
the text. Set the Stretch property to True and the
component will dynamically resize to print all of
the text. Use the ShiftRelativeTo property to
define dynamic relationships with other stretchable
objects.

 DBRichText
Prints formatted text from a memo or BLOB field
of a database table. This control will automatically
word-wrap the text. Set the Stretch property to
True and the component will dynamically resize to
print all of the text. Use the ShiftRelativeTo prop-
erty to define dynamic relationships with other
stretchable objects.

 DBCalc
Used for simple database calculations (Sum, Min,
Max, Count, and Average). The value can be reset
when a group breaks using the ResetGroup prop-
erty.

 DBImage
Prints bitmaps or windows metafiles, which are
stored in a database BLOB field.

 DBBarCode
Renders barcodes based on the BarCodeType and
the value supplied via the DataField property. The
following symbologies are supported: Codabar,
Code 128, Code 39, EAN-13, EAN-8, FIM A,B,C,
Interleaved 2 of 5, PostNet, UPC-A, UPC-E.

 2DDBBarCode
Renders 2D BarCodes based on the BarCodetype
and the value supplied via the DataField property.
The following symbologies are supported:
PDF417, Maxicode.

 DBTeeChart
Allows data-aware TeeCharts to be placed within a
report.

 DBCheckBox
Displays a checkbox based on the value of the field
specified in the DataField property. This compo-
nent can be used with a Boolean field (or any other
type of field via the BooleanTrue, BooleanFalse
properties).

98 Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Advanced Component Palette
To access this toolbar, select the View | Toolbars |
Advanced Components menu option from the
Report Designer main menu. This toolbar will
assist in creating advanced report components.

 Region
Logically groups components together. Use the
ShiftRelativeTo property to move the region in
relation to another dynamically resizing compo-
nent (such as Memo, RichText or child-type Sub-
Report).

 SubReport
Handles multiple master details, creates side-by-
side reporting effects, and hooks reports together
as one. If you need a report to print within the con-
text of a band, use a child-type subreport. If you
need to hook reports together, use a section type
subreport. The PrintBehavior property determines
the subreport type.

 PageBreak
Forces a new page during report generation. Plac-
ing a PageBreak on a report will cause all objects
created after the PageBreak (Z-Order) to be moved
to the next page. To force a new page after a
stretchable component has finished printing, assign
the TppPageBreak.ShiftRelativeTo property to ref-
erence the Stretchable component.

 CrossTab
Allows you to generate a set of calculations that
summarizes the data from a database table. It dis-
plays the calculations in a grid format.

Standard Toolbar
To access this toolbar, select the View | Toolbars |
Standard menu option from the Report Designer
main menu. This toolbar will assist with saving the
report layout, accessing the print and print preview
options, and accessing the cut and paste operations.

 New Report
Creates a blank report layout.

 Open Report
Displays the Open dialog, allowing you to open an
existing report layout.

 Save Report
Saves a report layout to file.

 Page Setup
Displays the Page Setup dialog, allowing you to set
the paper size and configure the layout for the
report.

 Print
Displays the Print dialog before sending the report
to the printer.

 Print Preview
Displays the Print Preview window.

 Cut
Cuts the currently selected components into the
clipboard.

 Copy
Copies the currently selected components into the
clipboard.

 Paste
Pastes the components in the clipboard into the
report.

99Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Edit Toolbar
To access this toolbar, select the View | Toolbars |
Edit menu option from the Report Designer main
menu. This toolbar will assist in setting the most
important property or properties for the currently
selected component.

1 No component selected

2 Data-aware component selected

This configuration allows the data pipeline and
data field for the component to be set. The drop-
down list on the left shows the data pipeline. The
drop-down list on the right shows the field name.

3 Label component selected

Here a label component has been selected in the
Report Designer. The Edit toolbar displays an edit
box from which the label's caption can be set.

4 Shape component selected

Here a shape component has been selected in the
Report Designer. The Edit toolbar displays the dif-
ferent shape types.

5 Line component selected

This configuration allows you to move the line to
the top, bottom, left, or right within the line's selec-
tion handles.

100 Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Format Toolbar
To access this toolbar, select the View | Toolbars |
Format menu option from the Report Designer
main menu. This toolbar will assist with setting
the font and colors. It will also assist with layering
the components.

Font Name
Selects the font name for textual components. Use

TrueType fonts (indicated by a icon) when pos-
sible. These render well on both the screen and
printer. If you are using a dot-matrix printer, the
print driver may supply printer fonts (indicated by

a icon) that you can use to speed up the printing
of the report. Finally, fonts that have no icon to the
left of the font name are screen fonts and should
not be used in reports where WYSIWYG is
required.

Font Size
Selects the font size. You can also type in this box
to set the font size exactly.

 Bold
Sets the font to bold.

 Italic
Sets font to italic.

 Underline
Sets font to underline.

 Left Justify
Left justifies the text in the component.

 Center
Centers the text in the component.

 Right Justify
Right justifies the text in the component.

 Font Color
Sets the font color.

 Highlight Color
Sets the background color of the textual compo-
nent.

 Anchors
Specifies how a report component is anchored to
its parent. Use Anchors to ensure that a report ele-
ment maintains its current position relative to an
edge of its parent control (ie. Band/Region), even if
the parent is resized.

 Borders
Specifies which of the outside border lines of a
report component are rendered.

 Bring to Front
Brings the component to the front. The compo-
nents in the front print last, and the components in
the back print first. Use the Report Tree to see the
exact layering of components within the band.

 Send to Back
Sends the component to the back. The components
in the front print last, and the components in the
back print first. Use the Report Tree to see the
exact layering of components within the band.

101Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Align or Space Toolbar
To access this toolbar, select the View | Toolbars |
Align or Space menu option from the Report
Designer main menu. This toolbar will assist in
positioning components relative to one another and
relative to the band in which they appear.

 Align Left Edges
Aligns a group of components with the leftmost
position of the component that was selected first.

 Align Middle
Centers a group of components based on the hori-
zontal center of the component that was first
selected.

 Align Right Edges
Aligns a group of components with the rightmost
position of the component that was selected first.

 Align Top Edges
Aligns a group of components with the topmost
position of the component that was selected first.

 Align Center
Aligns a group of components based on the vertical
center of the component that was first selected.

 Align Bottom Edges
Aligns a group of components with the bottommost
position of the component that was selected first.

 Space Horizontally
Spaces a set of components based on the leftmost
position of the first component selected and the
rightmost position of the last component selected.

 Space Vertically
Spaces a set of components based on the topmost
position of the first component selected and the
bottommost position of the last component
selected.

 Center Horizontally in Band
Centers a component horizontally within a band.

 Center Vertically in Band
Centers a component vertically within a band.

102 Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Size Toolbar
To access this toolbar, select the View | Toolbars |
Size menu option from the Report Designer main
menu.

 Shrink Width
Determines the minimum width of all the selected
components, and then sets the width of the compo-
nents to that value.

 Grow Width
Determines the maximum width of all the selected
components, and then sets the width of the compo-
nents to that value.

 Shrink Height
Determines the minimum height of all the selected
components, and then sets the height of the compo-
nents to that value.

 Grow Height
Determines the maximum height of all the selected
components, and then sets the height of the com-
ponents to that value.

Nudge Toolbar
To access this toolbar, select the View | Toolbars |
Size menu option from the Report Designer main
menu.

 Nudge Up
Moves all selected components one pixel up.

 Nudge Down
Moves all selected components one pixel down.

 Nudge Left
Moves all selected components one pixel to the
left.

 Nudge Right
Moves all selected components one pixel to the
right.

103Toolbars

REPORTBUILDER FUNDAMENTALS - DESIGN
Draw Toolbar
To access this toolbar, select the View | Toolbars |
Draw menu option from the Report Designer main
menu. This toolbar will assist in setting the colors
and borders of components.

 Fill Color
For shapes, lines, and region components only.
Sets the Brush.Color property. To set the color of a
textual component, check the Highlight Color
action of the Format toolbar.

 Line Color
For shapes, lines, and region components only.
Sets the Pen.Color property.

 Line Thickness
For use with a Line component only. Sets the
Weight property.

 Line Style
For use with a Line component only. Sets the
Pen.Style property.

105Drag and Drop Support

REPORTBUILDER FUNDAMENTALS - DESIGN
Drag and Drop Support

Overview
ReportBuilder contains a Report Wizard that
allows you to quickly create an entire report layout.
This is great for generating an entire report, but
what if you need to create only a portion of a com-
plex report? Drag and drop functionality is an
ideal solution for this problem because it allows
you to create a set of components within the con-
text of an existing report layout. In ReportBuilder,
drag and drop support is provided via the Data
Tree.

The Data Tree has two tabs. In the top tree view,
the Data tab contains a list of data pipelines to
which the report has access. In the bottom list

view, all of the fields for the currently selected data
pipeline are displayed. Fields can be selected from
the bottom list view and dragged to any part of the
report layout. The data-aware component that is
appropriate for the given field will then be created
along with a label and border.

The second tab of the Data Tree is entitled Layout.
This tab allows you to control drag-and-drop
behavior. A label and border are created for each
data-aware component by default. You can turn
the label and the border off, control the color of the
label or border, and control the font of the label and
data-aware component from this tab. Once you've
set the drag-and-drop behavior, it will be retained
for future design sessions.

Data Tree Tabs

Data Tree - Data tab Data Tree - Layout tab

107The Report Wizard

REPORTBUILDER FUNDAMENTALS - DESIGN
The Report Wizard

Overview
The Report Wizard is one of the many parts of
ReportBuilder that reflects a level of professional-
ism and attention to detail found in no other repor-
tou will be able to quickly recognize and use the
ReportBuilder Report Wizard.

The Report Wizard can be accessed via the File |
New menu option of the Report Designer. A series
of screens are presented, each requesting informa-
tion about the report. When the last page is

reached, either a preview or design option can be
selected. When the ’Finish’ button is clicked, it
causes a report to be created and displayed as
requested.

Report Wizard: Create a Simple Report
The following screen shots step through the cre-
ation of a simple report via the Report Wizard.

Create a Simple Report

1 Select the fields. 2 Skip the groups page.

108 The Report Wizard

REPORTBUILDER FUNDAMENTALS - DESIGN
Report Wizard: Create a Simple Report - cont.

Create a Simple Report - cont.

3 Select the layout. 5 Select Design or Preview and Finish.

4 Select the style.

109The Report Wizard

REPORTBUILDER FUNDAMENTALS - DESIGN
Report Wizard: Create a Simple Report - cont.

Create a Simple Report - cont.

Report as it appears in the Preview workspace

Report as it appears in the Design workspace

110 The Report Wizard

REPORTBUILDER FUNDAMENTALS - DESIGN
Report Wizard: Create a Group-Based Report
The following screen shots steps through the cre-
ation of a group-based report via the Report Wiz-
ard.

Create a Group-Based Report

1 Select the fields. 3 Select the layout.

2 Select a group field. 4 Select the style.

111The Report Wizard

REPORTBUILDER FUNDAMENTALS - DESIGN
Report Wizard: Create a Group-Based Report - cont.

Create a Group-Based Report cont.

5 Select Design or Preview and Finish. Report as it appears in the design workspace.

Report as it appears in the Preview workspace.

REPORTBUILDER FUNDAMENTALS

PRINT

Introduction 115

Previewing 117

Custom Printer Settings 119

PDF 121

Report Archiving 123

Print to ASCII Text File 125

Report Emulation Text File 127

RTF, HTML, and Other Formats 129

Emailing Reports 131

115Introduction

REPORTBUILDER FUNDAMENTALS - PRINT
PRINT

Introduction

Generation
Report output is primarily generated via a call to
the Print method of the report object.

1 Print to Screen

The following code would cause the Print Preview
form to be displayed and the first page of the report
to be presented in this form:

uses
ppTypes;

ppReport1.DeviceType := dtScreen;
ppReport1.Print;

2 Print to Printer

This code would cause the Print dialog to be dis-
played. The report would then be sent to the
printer:

uses
ppTypes;

ppReport1.DeviceType := dtPrinter;
ppReport1.Print;

As you can see, it is quite easy to generate a report
using ReportBuilder. In order to use some of the
more advanced features related to report output,
you will need to understand a little bit more about
what is happening behind the scenes.

As you may already know, report output is one of
the elements of the reporting equation. The report-
ing equation was described in the introduction to
ReportBuilder and is as follows:

116 Introduction

REPORTBUILDER FUNDAMENTALS - PRINT
The native report output in ReportBuilder takes the
form of page objects. Page objects contain draw
commands, which describe what the page contains.
Page objects are sent to devices, which then con-
vert them to a format appropriate for the device.
The following diagram shows page objects that are
sent to the ScreenDevice and then converted to a
bitmap for display in the Print Preview form.

Several device classes are delivered standard with
ReportBuilder. Each device class supports a dif-
ferent physical device or file format, but the pur-
pose of the device remains the same: to convert the
native report output of ReportBuilder to the format
appropriate for the given device. The remainder of
this section describes the different devices and
their capabilities.

117Previewing

REPORTBUILDER FUNDAMENTALS - PRINT
Previewing

Print Preview
The most high-profile and oft-used form of report
output is contained in the Print Preview form. The
Print Preview form is launched automatically when
the Print method of the report component is called
(and the DeviceType property has been set to
'Screen'). The Print Preview form is pictured
below.

The Preview form enables the user to control and
view report output. An outline of page nodes is dis-
played on the left side of the form, adjacent to the
page viewer. The toolbar at the top of the preview
form can be used to perform the following activi-
ties.

Print
Use the Print button to send report output to the
printer or to an output file, such as PDF.

Email
Use the Email button to create an email message
that contains a PDF attachement of the report out-
put. Pressing the Email button automatically
launches your default email client with the report
attached as a PDF document. The Report.Email-
Settings are used to configure whether this option
is available.

Find Text
Use this button to display the Find Text toolbar that
can be used to search and highlight words that
appear in the report.

Zoom Controls
Use the Zoom controls to scale the page size ren-
dered to the viewer.

Navigation Controls
Use the Navigation controls to specify which page
is displayed to the viewer. You can optionally click
on the Outline page nodes to navigate to a page.

While the Print Preview form provided with
ReportBuilder looks and performs like a truly pro-
fessional user-interface should, you may want to
customize it to emulate the look and feel of the rest
of your application. This customization can be
done by creating a special form that descends from
the CustomPreviewer class and registering it as the
'official' print preview form. This process is fully
described in the 'Building a Reporting Application'
tutorial.

119Custom Printing Settings

REPORTBUILDER FUNDAMENTALS - PRINT
Custom Printing Settings

Overview
ReportBuilder contains a variety of properties that
allow you to control various aspects of the print
job. The following properties are contained in the
PrinterSetup property of the Report object and can
be configured via the Object Inspector or the File |
Page Setup dialog of the Report Designer.

BinName
The name of the bin (paper tray) containing the
paper on which the report will be printed. A com-
mon use of this property is to set it to Manual Feed
on mailing label reports. This way, you can pro-
vide a means to load the special label paper without
manually setting the printer.

Collation
When printing multiple copies of a report, this
property determines whether each copy prints as a
separate set of pages.

Copies
The number of copies of the report that should be
printed.

DocumentName
The name of the print job to be used when the
report is printed - this is the name as it will appear
in the Print Manager.

Duplex
For printers that support duplex, this setting deter-
mines the type of duplex printing that will occur.

Margins
The margin properties determine the left, top, right,
and bottom margins of the report.

Orientation
Either landscape or portrait.

PaperHeight & PaperWidth
The dimensions of the selected paper, based on the
value of the PaperName property. If these values
are entered manually and no corresponding paper
size is found, the PaperName is set to 'Custom'.

PaperName
The name of the paper type, such as 'Letter', or
'A4'.

PrinterName
The name of the printer to which the report should
be printed. This property defaults to 'Default',
which will cause ReportBuilder to use the default
printer declared on your system.

Because all ReportBuilder reports contain a Print-
erSetup object, it is possible to use section-type
subreports to achieve some fairly incredible levels
of customization of the print behavior. For exam-
ple, different pages of a report can print from dif-
ferent bins of the same printer or print to different
printers entirely. Some of these features are show-
cased in the printer setting examples provided with
ReportBuilder (examples 121-124).

121PDF

REPORTBUILDER FUNDAMENTALS - PRINT
PDF

Print to PDF
Adobe's Portable Document Format (PDF) is a
standard document format used all over the world.
PDF documents can be viewed using Adobe Acro-
bat Reader, which can be download for free.

ReportBuilder includes the ability to generate
report output as a PDF document. Use the
Report.PDFSettings properties to configure PDF
options. When PDFSettings.OpenPDFFile is set to
True, the generated PDF file will automatically be
opened in Acrobat Reader.

Printing directly to PDF file
You can print a report directly to PDF file with the
following code:

uses
ppTypes;

ppReport1.ShowPrintDialog := False;
ppReport1.DeviceType := dtPDF;
ppReport1.PDFSettings.OpenPDFFile :=
True;

ppReport1.TextFileName :=
'c:\myReport.pdf';

ppReport1.Print;

Allow the end user to print to PDF
The following code would give the end user the
option of printing to PDF from the print dialog.

uses
ppTypes;

ppReport1.AllowPrintToFile := True;
ppReport1.ShowPrintDialog := True;
ppReport1.DeviceType := dtPrinter
ppReport1.PDFSettings.OpenPDFFile :=
True;

ppReport1.Print;

Printing directly to PDF stream
It is possible to generate a PDF directly to a stream,
rather than creating a file. For an example, please
see demo 109 (dm0109.pas) in the
RBuilder\Demos\Report\Demo.dpr project.

123Report Archiving

REPORTBUILDER FUNDAMENTALS - PRINT
Report Archiving

Overview
Archiving is a process by which an instance of a
report output is saved for future use. This capabil-
ity is most often used to save a snapshot of a report
as it appeared on a given day and at a certain time.
If the data that was used to generate the report
changes, then a representation of the report as it
appeared at the given moment is still available.
Archiving can also be used to generate daily or
monthly reports during off-peak hours and then
enable users to preview or print the reports at a
later time.

1 Archiving a Report
A Print directly to archive.

You can print a report directly to archive with the
following code:

uses
ppTypes;

ppReport1.ShowPrintDialog := False;
ppReport1.DeviceType := dtArchive;
ppReport1.ArchiveFileName :=
'c:\test.raf';
ppReport1.Print;

In this code, the Print dialog is hidden; the device
type is set to 'Archive'; the archive file name is
specified, and the report output is generated.
Archive files are usually given the file extension
'raf', which stands for Report Archive File.

B Allow end users to print to archive.

In order to give the end user the opportunity to
print the report to archive whenever the Print
method is called, use the following code:

uses
ppTypes;

ppReport1.AllowPrintToArchive := True;
ppReport1.ShowPrintDialog := True;
ppReport1.DeviceType := dtPrinter;
ppReport1.ArchiveFileName := 'c:\test.raf';
ppReport1.Print;

When the print method is called, the Print dialog
will be displayed. Because AllowPrintToArchive
has been set to True, the Print dialog will contain
two notebook tabs: 'Printer' and 'File'. If the end
user clicks the 'File' tab, the archive file name will
be defaulted.

2 Using the ArchiveReader
Once archive files have been created, they can be
read by the ArchiveReader component. The
ArchiveReader component has a set of capabilities
similar to the Report component. In fact, these two
components descend from the same common
ancestor. You can print the contents of an archive
file to a standard Print Preview window with the
following code:

uses
ppTypes;

ppArchiveReader1.ArchiveFileName :=
'c:\test.raf';

ppArchiveReader1.DeviceType := dtScreen;
ppArchiveReader1.Print;

125Print to ASCII Text

REPORTBUILDER FUNDAMENTALS - PRINT
Print to ASCII Text

Overview
The TextFile device in ReportBuilder converts
report output into an ASCII text file. The intent of
this device is to create structured data that can be
imported into another application, such as a
spreadsheet. The following text file formats are
supported:

• comma-delimited

• tab-delimited

• fixed length records

• custom-delimited

Because report output is essentially free-form and
can contain many non-textual components, Report-
Builder provides a way for you to tightly control
the format of the text file generated via this device.
This control is provided by the Print to File Setup
dialog (accessible from the File | Print to File Setup
menu option of the Report Designer). This dialog
is pictured below:

This dialog allows you to set the default file name,
select the file format, and specify the textual com-
ponents that will be saved to the file and the order
that they will be saved. When utilizing the Text-
File device, it is mandatory that these settings are
completed. If no components have been selected,
then a blank text file will result.

Print directly to the ASCII text file
Once a report has been configured for ASCII text
file output, the following code will generate the
report directly to the file:

uses
ppTypes;

ppReport1.ShowPrintDialog := False;
ppReport1.DeviceType := dtTextFile;
ppReport1.Print;

Allow the end user to print to the ASCII
text file
The following code will give the end user the
option of printing to text when the print method is
called:

uses
ppTypes;

ppReport1.AllowPrintToFile := True;
ppReport1.DeviceType := dtPrinter;
ppReport1.ShowPrintDialog := True;
ppReport1.Print;

The report component has an OnSaveText event
that fires each time a textual component is saved to
the text file. This event can be used to customize
the output generated to the text file. An example of
what can be achieved via this event is provided in
example 106
(..\RBuilder\Demos\Reports\dm0106.pas).

127Report Emulation Text File

REPORTBUILDER FUNDAMENTALS - PRINT
Report Emulation Text File

Overview
The TextFile device discussed in the previous topic
is used for ASCII text file output. This type of
device is excellent for creating portable data from
report output. However, the formatting of the
report is lost in a tightly defined comma or tab-
delimited data format. When text file output that
retains the spacing of the original report is needed,
the ReportTextFile device can be used. Text files
generated with this device are useful for sending as
e-mail attachments or directly to dot-matrix print-
ers for high-speed output.

The ReportTextFile device does not require any
special configuration in advance. All textual com-
ponents (except memos and richtext) will be
printed in the text file.

Print directly to report emulation text
file
The following code sends a report to a report emu-
lation text file:

uses
ppTypes;

ppReport1.ShowPrintDialog := False;
ppReport1.DeviceType := dtReportTextFile;
ppReport1.TextFileName := 'c:\test.txt';
ppReport1.Print;

Allow the end user to print to a report
emulation text file
The following code would give the end user the
option of printing to a report emulation text file
when the print method is called:

uses
ppTypes;

ppReport1.AllowPrintToFile := True;
ppReport1.TextFileName := 'c:\test.txt';
ppReport1.DeviceType := dtPrinter;
ppReport1.ShowPrintDialog := True;
ppReport1.Print;

In order to get the free-form text of the report out-
put to map correctly to the character grid of a text
file, it is sometimes necessary to tweak the posi-
tions of the components within the report layout.
An example of a report that has been configured
for use with the Report Emulation Text File device
is provided in example 107
(..\RBuilder\Demos\Reports\dm0107.pas).

129RTF, HTML, and Other Formats

REPORTBUILDER FUNDAMENTALS - PRINT
RTF, HTML, and Other Formats

Overview
By utilizing the highly extensible device architec-
ture of ReportBuilder, you can create your own
device class descendants for converting the native
output of ReportBuilder into any file format. Some
developers have already done just that, and are
offering device classes for some of the most popu-
lar file formats. These additional devices integrate
seamlessly into ReportBuilder.

TExtraDevices
by James Waler

Provides file device support for RTF, HTML,
Excel, Lotus, and Quattro Pro. A Demo is avail-
able for download. Contact James Waler directly at
www.waler.com for more details.

PsRBExportDevices
by Pragnaan Software

Provides file device support for PDF, HTML, RTF,
Excel, JPEG, GIF, BMP, EMF and WMF. A demo
is available for download. Contact Pragnaan Soft-
ware at www.pragnaan.com for more details.

llPDFLib
by llionsoft

Provides file device support for PDF format.

Gnostice eDoc Engine
by Gnostice Information Technologies

Provides file device support for over 20 formats
including PDF, RTF, XHTML, HTML, Excel,
TIFF, SVG, PNG, JPEG, Metafile, and others.
Advanced features for PDF format include, com-
pression, encryption, TrueType fonts, font embed-
ding/sub-setting, international characters
(European, Chinese, Japanese, ...), vector chart and
metafile rendering, rich text rendering.

131Emailing Reports

REPORTBUILDER FUNDAMENTALS - PRINT
Emailing Reports

Overview
ReportBuilder includes built-in support for email-
ing reports as attachements. Use the Report.Email-
Settings properties to configure email options. By
default reports are emailed as PDF attachements.

Enable Email option for the Previewer
When Report.EmailSettings.Enabled is set to True,
an Email button will appear in the report pre-
viewer, just to the right of the Print button. Press-
ing the Email button will launch the end-user's
default email client with a PDF attachement of the
report. The end-user can then specify the recipient
address, subject and message composition, just as
they do for all of their email.

ppReport1.EmailSettings.Enabled := True;
ppReport1.Print;

Launch Email client with PDF attached
ppReport1.EmailSettings.PreviewInEmail
Client := True;

ppReport1.SendMail;

Send Email with no user interaction
ppReport1.EmailSettings.PreviewInEmail
Client := False;

ppReport1.EmailSettings.Subject := 'Test
ReportBuilder Email';

ppReport1.EmailSettings.Recipients.Text
:= 'somebody@somecompany.com';

ppReport1.EmailSettings.Body.Text := 'See
attached report...';

ppReport1.SendMail;

Send Email directly using Indy
ReportBuilder's Email feature has a plug-in archi-
tecture. ReportBuilder includes plug-ins for using
Mapi and Indy. By default ReportBuilder uses
Mapi to send email. However, for sending email
directly with no user interaction, you may want to
use Indy, because Windows security often displays
a confirmation dialog when using Mapi to send
mail directly.

uses
 ppSMTPIndy10; // or use ppSMTPIndy9,
or ppSMTPIndy

TppSMTPPlugIn.RegisterClass(TppSMTPIndy);
ppReport1.EmailSettings.PreviewInEmail
Client := False;

ppReport1.EmailSettings.Subject := 'Test
ReportBuilder Email';

ppReport1.EmailSettings.Recipients.Text
:= 'somebody@somecompany.com';

ppReport1.EmailSettings.Body.Text := 'See
attached report...';

ppReport1.SendMail;

REPORTBUILDER FUNDAMENTALS

DEPLOY

Introduction 135

Report Templates 137

As an EXE 139

As Packages 141

International Language Support 143

131Introduction

REPORTBUILDER FUNDAMENTALS - DEPLOY
DEPLOY

Introduction

Overview
There are two totally different but vital issues
involved in deciding how you will deploy your
application:

1 How to deploy ReportBuilder as part of your
application

2 How to deploy the reports created with Report-
Builder as part of your application

Application Deployment
When creating your application exe, you can
choose to either compile everything into one exe-
cutable, or you can choose to distribute the pack-
ages provided with Delphi, ReportBuilder, or any
other components you are utilizing in your applica-
tion as separate files. The latter option is referred
to as 'distributing with packages' (packages here
refers to a Delphi compatible DLL) and results in a
smaller, more efficient executable file.

These two approaches for deploying your applica-
tion are discussed later in this section.

Report Deployment
The second part of deployment involves determin-
ing how to deploy the reports created with Report-
Builder as part of your application. ReportBuilder
provides the most flexible deployment options of
any reporting product on the market. The four
most commonly used deployment strategies are as
follows:

1 Compile the reports into the executable.

Allow the report component to reside in an invisi-
ble form along with the necessary data access
objects. When it is time to print the report, instan-
tiate the form and call the Print method. A slight
variation of this architecture would be to use a data
module as a container for the data access objects.
This method requires the form to contain the ppRe-
port component.

2 Compile the reports into a package.

This strategy is similar to option 1, but the report
forms are compiled into a package rather than an
executable. The advantage of this approach is that
it optimizes the size of the executable and dynami-
cally loads the package containing the reports as
needed.

132 Introduction

REPORTBUILDER FUNDAMENTALS - DEPLOY
3 Distribute the report template files.

Place all the data access components for the reports
in a data module. Place a single report component
on a form that 'uses' the data module. Create all of
the report layouts via this one report component,
saving each one down to a separate report layout
file. When it is time to print the report, load the
report from file and call the Print method.

4 Distribute a report database.

Use all of the same steps as option 3, but save the
report definitions to a database BLOB field instead
of separate files. With this approach, you can save
all of your report definitions in one database table.

A full-featured implementation of Option 1 is pro-
vided in the 'Building a Reporting Application'
tutorial. Option 1 has the advantage of requiring
the least code. The main advantage of options 3
and 4 is that you can change report layouts and
redeploy them to your end users without compiling
your executable. Because Option 1 compiles the
report layouts into the executable, it requires a
recompile any time a report must be changed. In
terms of report layout load time or print speed, all
options are essentially equal.

133Report Templates

REPORTBUILDER FUNDAMENTALS - DEPLOY
Report Templates

Overview
'Report Templates' refers to the report definition
that is created when a report layout is saved to a
file or database. You can use report templates to
free your report definitions from the confines of the
executable in which they are being utilized. There-
fore, if you need to make modifications to a report,
you can do so without recompiling and redeploying
your entire application. Simply send the new
report layout file or database table containing the
report layouts to your users.

If you save report layouts to files or to a database,
then you can use them to create a versioning sys-
tem for reports. This way, the original reports sup-
plied with your application are never modified, but
end users can create versions of these reports. In
order to allow end users to modify the reports via
the Report Designer, ReportBuilder Enterprise or
Pro is required.

Report templates leverage technology already
present in Delphi. The same logic used to save the
state of objects as configured on a Delphi form
(and stored in a dfm file) is used to save the com-
ponents of a report layout (in an rtm file). In order
to view the content of an rtm file, set the
Report.Template.Format to ftASCII and save the
report. Then open the resulting rtm file in the Del-
phi code editor. You will be able to see the struc-
ture of this file format.

File-based Templates
You can load and save report layouts to files using
the Report Designer. You can also load and save
layouts programmatically.

1 Using the Report Designer

Set the Report.Template.SaveTo property to stFile
(this is the default value).

A Saving a Report Layout

Select the File | Save As... menu option from
within the Report Designer. The standard Win-
dows file save dialog will be displayed, enabling
you to save the report template to a .rtm file.

B Loading a Report Template

Select the File | Open... menu option from within
the Report Designer. The standard Window file
open dialog will be displayed, enabling you to
select and open a .rtm file.

2 Programmatically

A Saving a Report Layout

The following code saves a report in the 'test.rtm'
file:

ppReport1.Template.FileName := 'c:\test.rtm';
ppReport1.Template.SaveToFile;

B Loading a Report Template

The following code opens a report layout and
prints the report:

ppReport1.Template.FileName := 'c:\test.rtm';
ppReport1.Template.LoadFromFile;
ppReport.Print;

134 Report Templates

REPORTBUILDER FUNDAMENTALS - DEPLOY
Database Templates
You can save and load data-based report templates
by using the Report Designer or programmatically.

Defining the Database Table
Report definitions can be stored to any database
table with the following structure:

Name Char(40)
The name of the report is stored in this field.

Template BLOB or Memo
The report definition is stored in this field. If the
format is binary, the field should be a BLOB; if the
format is ASCII, the field should be a memo.

Connecting the Report object to the database
Once the database table has been defined, the next
step is to connect the report to the database table.
This task is accomplished by configuring the fol-
lowing properties of the Report.Template object.
You can do this via the Delphi Object Inspector or
programmatically:

Report.Template.DatabaseSettings.NameField
:= 'Name';

Report.Template.DatabaseSettings.TemplateField
:= 'Template';

Report.Template.DatabaseSettings.DataPipeline
:= plReports;

Loading and Saving Reports
1 Using the Report Designer
Set the Report.Template.SaveTo property to stDa-
tabase.

A Saving a Report Layout

Select the File | Save As... menu option from
within the Report Designer. A special Save dialog
will be displayed, showing all reports in the given
database table. You can name the report and then
save it to the table.

B Loading a Report Template

Select the File | Save As... menu option from
within the Report Designer. Once a report is
saved, you can load it by accessing the File | Open
dialog.

2 Programmatically

A Saving a Report Layout

The following code saves a report in the 'test.rtm'
file:

ppReport1.Template.FileName := 'Order Summary';
ppReport1.Template.SaveToDatabase;

B Loading a Report Template

The following code opens a report layout and
prints the report:

ppReport1.Template. DatabaseSettings.Name :=
'Order Summary';

ppReport1.Template.LoadFromDatabase;
ppReport.Print;

135As an EXE

REPORTBUILDER FUNDAMENTALS - DEPLOY
As an EXE

Overview
ReportBuilder can be deployed as part of your exe-
cutable. Simply include the correct path to the
compiled units (dcu files) of ReportBuilder in your
Delphi Library Path. For example:

'$(BDS)\RBuilder\Lib'

The 'lib' directory contains the compiled units of
ReportBuilder. When you compile your applica-
tion, necessary dcu files from this directory will be
linked into the resulting executable file. Execut-
able files created this way are stand-alone in that
they can be distributed successfully without any
supporting files.

Applications containing ReportBuilder will not
compile correctly if the library path is not config-
ured properly. If there are directories in the
Library path pointing at old versions of Report-
Builder or at the Source directory of Report-
Builder, problems will result.

137As Packages

REPORTBUILDER FUNDAMENTALS - DEPLOY
As Packages

Overview
You can optimize the size of your executable by
compiling your project with runtime packages. Use
the Project Options dialog to select the 'Build with
runtime packages' option. This will enable an edit
box that can use to specify the list of runtime pack-
ages used by your application code. The Report-
Builder online help contains a detailed list of the
runtime package names included with each Report-
Builder Edition. Access the ReportBuilder online
help, select the table of contents and then select the
Installation section. Note that the ReportBuilder
package names have suffixes that refer to the
ReportBuilder version and Delphi version.

139International Language Support

REPORTBUILDER FUNDAMENTALS - DEPLOY
International Language Support

Overview
ReportBuilder includes support for 12 built-in lan-
guages. The strings for each language reside in
separate resource files. These files are located in
the ..RBuilder\Languages directory, under a subdi-
rectory named for the given language. Three letter
codes are used to differentiate between the lanuage
DLLs, which are installed in the Win-
dows\System32 directory.

Languages

Language

Default

English

Custom

Danish

Dutch

French

German

Italian

Portuguese (Brazil)

Portuguese

Spanish

Spanish (Mexico)

Swedish

Norwegian

Enumerated Type

lgDefault

lgEnglish

lgCustom

lgDanish

lgDutch

lgFrench

lgGerman

lgItalian

lgPortugueseBrazil

lgPortuguese

lgSpanish

lgSpanishMexico

lgSwedish

lgNorwegian

Folder/File Extension

dft

eng

cst

dan

nld

fra

deu

ita

ptb

ptg

esp

esm

sve

nor

140 International Language Support

REPORTBUILDER FUNDAMENTALS - DEPLOY
Only the languages that are explicitly selected dur-
ing install will appear in the Languages folder. The
'cst' folder will always appear in the Languages
folder because it represents the custom language
type. The cst folder contains the resource files that
correlate to the lgCustom enumerated type. The
custom language can be modified to contain your
own translation, which will then appear in the
ReportBuilder user-interface when the Report.Lan-
guage property is set to lgCustom.

The Default Language
When ReportBuilder is installed, the installation
program allows you to specify a default language
and any additional languages you wish to use. The
installation will then install the appropriate files
onto your system. The Report.Language property
defaults to the lgDefault language type. This type
correlates to the language resource files located in
the RBuilder\Lib directory and the language DLLs
located in the Windows\System32 directory (the
DLLs with the .dft extension). The .res files are
used when compiling stand-alone executables in
Delphi. The DLLs are used to provide language
support at Delphi design-time. When Report-
Builder installs, it copies these files to the appro-
priate directories.

The language DLLs that appear in Win-
dows\System32 are listed below:

File Name Description
rbPrint.dft Strings used by ReportBuilder

rbIDE.dft Strings used by the Report
Designer

The resource files that appear in RBuilder\Lib are
listed below:

File Name Description
rbPrint.res Strings used by ReportBuilder

rbIDE.res Strings used by the Report
Designer

You can change the default language used by
ReportBuilder by copying the appropriate language
files from the RBuilder\Languages directory to the
RBuilder\Lib and Windows\System32 directories
respectively. For the DLL files, make sure that you
change the extension to .dft. The following copy
commands will change the default language to
Swedish when issued at the Command Prompt
(from within the RBuilder\Languages\sve direc-
tory):

copy rbPrint.res
{InstallPath}\RBuilder\Lib'\RBuilder\Lib
copy rbIDE.res

{InstallPath}\RBuilder\Lib'\RBuilder\Lib
copy rbPrint.sve

c:\windows\system\rbPrint.dft
copy rbIDE.sve

c:\windows\system\rbIDE.dft

141International Language Support

REPORTBUILDER FUNDAMENTALS - DEPLOY
Custom Translations
You can modify the .rc source files in the custom
language folder in order to create your own custom
translation. The rc files are named the same as
their resource file counterparts:

File Name Description
rbPrint.rc Strings used by ReportBuilder

rbIDE.rc Strings used by the Report
Designer

rbDADE Strings used by the Data Access
Development Environment (the
'Data' tab)

You can create a custom translation by completing
the following steps:

1 Run the Language Translation application.

Create new rc files using the ReportBuilder Lan-
guage Translation application. This application
displays the strings used within ReportBuilder
along with an associated screen-shot. It provides
an edit box in which the translation for each string
can be entered. When you complete the transla-
tion, click the 'Generate RC Files' button, and gen-
erate each of the three rc files. The language
translation app is pictured below.

2 Create new resource files.

Compile the rc files into resource files by issuing
the following commands at the Command Prompt
(from within the 'cst' folder):

{InstallPath}\Bin\brc32 -r rbPrint.rc
{InstallPath}\Bin\brc32 -r rbIDE.rc
{InstallPath}\Bin\brc32 -r rbDADE.rc

After these commands have executed, you should
have three resource files in the cst folder:
rbPrint.res, rbIDE.res, and rbDADE.res.

3 Create new resource modules.

Compile the resource files into DLLs. Use the fol-
lowing commands to do this step:

{InstallPath}\Bin\dcc32 rbPrint.dpr
{InstallPath}\Bin\dcc32 rbIDE.dpr
{InstallPath}\Bin\dcc32 rbDADE.dpr

After these commands have executed, you should
have three cst files in the cst folder: rbPrint.cst,
rbIDE.cst, and rbDADE.cst.

4 Install new resource modules.

The final step is to copy the new .res files and
DLLs to the ..RBuilder\Lib and Win-
dows\System32 directories respectively. Use the
following commands to do this step:

copy rbPrint.cst c:\windows\system32
copy rbIDE.cst c:\windows\system32
copy rbDADE.cst c:\windows\system32

5 Use the custom translation.

Create a report within Delphi; select the lgCustom
language type, and double-click on the report to
display the Report Designer. Your translation will
be displayed.

REPORTBUILDER
ENTERPRISE EDITION
FUNDAMENTALS

Main 151

Data 171

Code 195

Design 221

Print 225

Deploy 229

MAIN

Introduction 151

The Delphi Components 155

Designer Component 157

Report Explorer 161

Data Dictionary 163

Putting It All Together 165

On-Line Help 167

147Introduction

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN

MAIN

Introduction

Overview
The ReportBuilder Enterprise Edition includes
everything in ReportBuilder Standard, plus a full
set of components necessary to deliver a complete
end-user reporting solution. In the introduction to
ReportBuilder, the reporting equation is described.
The reporting equation divides reporting into four
main activities:

In ReportBuilder Enterprise, the goal is to deliver a
full-fledged reporting solution to end users. This
goal is achieved by delivering visual, easy-to-use
solutions in each of these four areas. This screen
shot of the ReportBuilder Enterprise Report
Designer shows the ergonomic design of the user-
interface.

Each of the four areas of reporting has a represen-
tative notebook tab containing a visual environ-
ment for the creation and configuration of
components within that area. The results of each
area become input for the next area: data feeds into
calculations, calculations feed into components
within the report layout, and the report layout is
rendered into a preview of the report. The imple-
mentation used by ReportBuilder Enterprise for
each area of reporting is described below.

Data
Within the work environment of the Data tab, end
users can quickly create dataviews, which can then
be used to supply data to reports. Dataviews are
usually created via the Query Wizard or Query
Designer. Both of these tools are visual; they also
allow the end user to select the tables, fields, search
criteria, and sort order necessary for the report.
Behind the scenes, an SQL statement is generated
and used to retrieve the data from the database. A
screen shot of a completed dataview is shown
below.

148 Introduction

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
The solution described on the previous page is the
standard behavior within the data workspace.
However, the developer can customize this user-
interface by performing one of these three tasks:

• Register a replacement query wizard or query
designer.

• Remove the query wizard or query designer.

• Create new dataview template classes that can
simplify the data selection process even further
by establishing the relationship between the
tables in the database and presenting an alterna-
tive user-interface (such as a single form that
allows search/sort criteria to be entered).

The bottom line is that the Data area contains a
turnkey solution that can be used out-of-the-box,
but if customizations are needed, an architecture
has been provided so that those customizations are
possible.

Calc
This workspace contains a tree view of the report,
all the bands within the report, and all the objects
within each band. When a band or component is
selected, all the events for that component are
shown in a list. The user can then select an event
and code the event handler in the syntax-sensitive
code editor at the bottom. The following screen
shot shows an OnPrint event as coded for a Line
component.

This screen shot shows the Calc workspace in its
most feature-rich and complex configuration.
Development work completed here can be passed
on to end users so that they can modify it, locked
down so that end users can only view it, or hidden
completely so that end users do not know it is
there. The most scaled-down version of the Calc
tab is provided by a dialog-only interface, where
no Calc tab exists at all, and a single syntax-sensi-
tive code-editor dialog is accessible from the Cal-
culations... menu option of the variable component.
Again, the user-interface and behind-the-scenes
architecture has been made highly scalable in order
to meet the various needs of developers.

149Introduction

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
Design
The Design workspace contains the actual layout
of the report. The user-interface is identical to the
one presented to developers using ReportBuilder at
Delphi design-time; in other words, it is full-fea-
tured and professional. The Office style interface
makes the Design workspace especially easy to
learn for end users. A Report Wizard is available
for creating reports quickly. You can customize
this interface by replacing any of the dialogs it uses
and by registering your own report wizards.

Preview
The Preview workspace contains the rendered
report. The report can be printed to the printer or
to various file formats from this workspace.

151The Delphi Components

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
The Delphi Components
Overview
The following components appear on the RBuilder
tab of the Delphi component palette when you
install ReportBuilder Enterprise:

 DBPipeline
Used for accessing data via TDataSet descendants.
The DBPipeline is connected via the DataSource
property.

 BDEPipeline
Provided for backward compatibility. Use DBPipe-
line for all new development.

 TextPipeline
Used to access comma, tab, and fixed-length
record text files. Set the FileName property to
specify the file. Double-click on the component to
define the field structure.

 JITPipeline
Used to access data stored in proprietary data struc-
tures, arrays, objects, etc. Set the InitialIndex and
RecordCount properties. Double-click the compo-
nent to launch the Fields Editor and define fields.
Implement the OnGetFieldValue event to return
the field value corresponding to the CurrentIndex
and FieldName.

 Report
The main component. Double-click to invoke the
Report Designer. Assign the DataPipeline prop-
erty so that the report can traverse data. Assign the
DeviceType property to control where the output
of the report is directed. Call Report.Print from
Object Pascal to print the report or launch the Print
Preview Form.

 Viewer
This object is rarely used because you can replace
ReportBuilder's built-in print preview form with
your own customized version very easily (check
the Building a Reporting Application tutorial). If
you must use this component, an example is pro-
vided in \RBuilder\Demos\Reports.

 ArchiveReader
After you print a report to an archive file (.raf
extension), you can read and preview the file via
this component. Just assign the ArchiveFileName
to the file and call the Print method. In terms of
displaying a report, this component works the same
as the Report component.

152 The Delphi Components

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
 DataDictionary
Used by the QueryWizard component to convert
raw table and field names into more usable aliases.
This component is generally used only when you
are creating an end-user reporting solution.

 Designer
Used when you want to deploy the Report
Designer to your end users. See the End-User
demo (Demos\EndUser directory).

 ReportExplorer
Used to provide a Windows Explorer-style inter-
face to End-User Reporting solutions developed
using ReportBuilder Enterprise. See the End-User
demo (Demos\EndUser\1 Report Explorer\ direc-
tory).

153Designer Component

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
 Designer Component

Overview
The Designer is a non-visual component that acts
as a 'wrapper' around the Report Designer window
displayed in the end-user reporting solution. By
setting the various properties and events of the
designer component, you customize the content
and behavior of the Report Designer. The most
commonly used properties are listed below.

AllowDataSettingsChange
Used to control whether the DataSettings menu
option appears in the File menu of the data work-
space. Usually disabled to prevent end users from
changing the database settings.

AllowSaveToFile
When set to True, the File menu of the design
workspace has 'Load from File' and 'Save to File'
menu options.

DataSettings
DADE only. Used to configure DADE (data work-
space) for a given database.

Icon
The icon to be displayed on the Report Designer
window.

InitStorageType & IniStorageName
Used to control how and where preferences are
stored. Preferences may be stored in the Registry
or an .Ini file. See the online help for more details.

RAPInterface
RAP Only. RAP configuration settings.

RAPOptions
RAP Only. Further RAP configuration settings.

Report
The report object that will be used to load and save
reports. The configuration of the Report Template
properties is used by the Report Designer to deter-
mine how reports will be loaded and saved.

ShowComponents
Determines which components will be displayed in
the ReportBuilder component palettes. Sometimes
used to disable advanced components such as
regions or subreports.

TabsVisible
Determines whether the Design and Preview tabs
will display. When set to false, the Report
Designer becomes a 'design only' window, where
the end user can work on the layout, but cannot
preview. If DADE or RAP is installed, then this
property cannot be set to False.

154 Designer Component

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
A Simple End-User Report Solution
We can create a simple end-user reporting solution
using just a designer component and a report com-
ponent.

1 Create Report and Designer components.

Place a designer component and a report compo-
nent on a form, then connect the report to the
designer by assigning the Designer.Report prop-
erty.

2 Create data access components.

Create data access components to supply data to
the report. Here we have created TTable, Tdata-
Source, and TDBPipeline components. The Table-
Name of the TTable component has been set to
'customer.db' so that the user can create a report
based on the data in this table.

3 Create a button to launch the Report Designer.

4 Code the OnClick event of the button to launch
the designer.

5 Run the application.

6 Click the 'Design' button to launch the designer.

155Designer Component

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
The user can now design a report based on the cus-
tomer table. The report layout can be saved to a
file, or pre-existing layouts can be loaded from file.
Reports can only be created based on the customer
table, since that is the only table available to the
report.

While this end-user solution is simple and easy, it
does have some limitations:

1 This approach does not provide a data work-
space where different data besides the customer
table can be accessed.

2 This approach does not provide a calc work-
space where custom calculations or event handlers
can be assigned to the report.

3 The ability to save or open report layouts to file
is dialog-based, and therefore the user does not
have a way to organize and keep track of the many
reports he may create.

These three limitations can be addressed with addi-
tional functionality available in ReportBuilder
Enterprise, namely DADE, RAP, and the Report
Explorer. These solutions are discussed at length
throughout this section of the guide.

157Report Explorer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
 Report Explorer

Overview
The Report Explorer allows your end users to use a
Windows Explorer user-interface to manage
reports stored in a database. The Report Explorer
is a non-visual component that acts as a 'wrapper'
around the explorer form, which is displayed at
run-time. You can set the value of various proper-
ties at design-time via this component, which will
then affect the behavior of the report explorer form
at run-time. The most commonly used properties
are listed below.

Designer
The designer component that will be used to dis-
play the Report Designer window when report lay-
outs are created or edited.

FolderFieldNames
The names of the fields to be used when storing a
folder.

FolderPipeline
The data pipeline to be used when storing a folder.

ItemFieldNames
The names of the fields to be used when storing an
item (i.e. report, code module or data module).

ItemPipeline
The data pipeline to be used when storing an item.

ModalForm
Whether or not the report explorer form should be
displayed modally. Defaults to True.

The report explorer is designed around the concept
of folders and items. 'Items' include report layouts,
data modules, or code modules. Report layouts
consist of everything the end user sees when
designing a report, including the dataviews in the
data workspace and the event handlers coded in the
calc workspace. Data modules consist of data-
views that have been exported from the data work-
space so that they can be imported for use in
creating new reports. Code modules consist of
event handlers that have been exported from the
calc workspace so that they can be imported into
other reports.

The items displayed in the explorer must belong to
a certain folder. Folders may be nested within
other folders, or they may be assigned to the global
parent folder (entitled 'All Folders'), which is
always displayed. Both the folders and items are
stored via data pipelines.

158 Report Explorer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
The FolderId field of the Folder table is the key
field and must always be unique. In Paradox, this
field is usually an AutoIncrement. In SQL data-
base tables, this field is usually a sequence number
generated by a trigger. Both techniques are docu-
mented in the end-user tutorials. The relationship
between the folder and item table is one to many.
This is not to say that the item table does not use
the Name field as a key: it uses an ItemId field.
This field is also an auto-generating sequence num-
ber. While it is usually true that two items with the
same name cannot reside in the same folder (same
name and folder id), this is not true for the recycle
bin, which can contain multiple items with the
same name. Thus, the FolderId-ItemType-Name
fields cannot form a unique key (the item type field
indicates whether the item is a report layout, data
module, or code module).

All items assigned to the recycle bin have a folder
id of -2. All items assigned to the global folder 'All
Folders' have a folder id of -1. Items assigned to
any other folder have that folder's id value in the
folder id field. Neither the 'All Folders' folder nor
the recycle bin actually appear in the folders table:
they are automatically created by the report
explorer.

159Data Dictionary

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
 Data Dictionary

Overview
The data dictionary is a non-visual component
designed to provide the data workspace with the
capability to replace the table names and field
names retrieved from the database with more read-
able aliases that you provide. The most commonly
used properties of the data dictionary are described
below.

FieldFieldNames
The names of the fields to be used in accessing the
field aliases.

FieldPipeline
The name of the data pipeline that has access to the
field aliases.

TableFieldNames
The names of the fields to be used in accessing the
table aliases.

TablePipeline
The name of the data pipeline that has access to the
table aliases.

The data module for the database tables underlying
the data dictionary is shown below.

The TableName is the key field of the table table.
The TableName and FieldName are the key fields
of the field table. The Selectable field determines
whether the field can be selected within the Query
Wizard and Query Designer. The Searchable field
determines whether the field can be used in search
criteria. The Sortable field determines whether the
field can be used to order the data.

Once the data dictionary tables have been created
and populated, they can be assigned to a standard
Delphi TTable or TQuery component, which can
then be assigned to a data pipeline via a TData-
Source. The pipelines are then assigned to the
TablePipeline and FieldPipeline properties of the
data dictionary. The diagram below shows a fully
configured data dictionary component. The data
dictionary component is assigned to the data work-
space via the DataDictionary property of the
designer component.

161Putting It All Together

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
Putting It All Together

Summary
In order to create the most sophisticated and com-
plete end-user reporting solution possible, we need
to connect and configure all of the components
available in ReportBuilder Enterprise. The screen-
shot below shows the configuration of a full-fea-
tured end-user reporting solution (the colored
shapes and labels have been added for informa-
tional purposes only). A completed version of this
solution is available in the
\RBuilder \Demos\EndUser\1. Report Explorer
directory. Step-by-step instructions for creating
this application are provided in the 'Building an
End-User Reporting Application' tutorial.

163On-Line Help

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - MAIN
On-Line Help

Overview
The ReportBuilder On-Line Help contains over
1,500 topics documenting the properties, events,
and methods of the various components that make
up the product.

For maximum readability, the help follows the
exact style of the Delphi help. It is designed to be
integrated with the Delphi help so that when you
access the Delphi help (via the Help | Topics menu
option), 'ReportBuilder Reference' appears as a sin-
gle entry on the contents page. Topics from the
ReportBuilder help will appear when you search
the help from the 'Index' page. Also, when you
create a component on a Delphi form, you can
access the main help topic for that component by
clicking F1. If you select a component property in
the Object Inspector and click F1, the help for that
individual property will be displayed.

The help is designed as a reference for those who
have already mastered the basics of ReportBuilder.
In order to get started using the product, study this
guide and complete the tutorials.

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS

DATA

Introduction 171

Query Wizard 173

Query Designer 177

Configuring DADE 185

DADE Architecture 187

Extending DADE 189

167Introduction

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
DATA

Introduction

Overview
The developers of ReportBuilder discovered that a
visual solution for data access was needed for end
users. This realization led to the development of
DADE, the Data Access Development Environ-
ment. Although DADE consists of an extensive
object-oriented architecture 'under the covers', it
appears as a simple, easy-to-use data workspace
within the Report Designer. The data workspace
of the Report Designer, which contains a com-
pleted dataview, is pictured below.

Dataview
A dataview presents what appears to be a single
set of data to the end user. In reality, the dataview
may be composed of one or many Delphi data
access components. The implementation of a data-
view can be as simple as a single SQL query, or as
complex as a set of linked tables. Whatever the

implementation, the dataview always appears the
same to the end user, and the implementation
always depends upon the choices you make as a
developer.

Dataviews interface with the other workspaces
within the Report Designer via the data pipeline(s)
they contain. The dataview to the left contains a
set of master/detail tables. These tables feed data
through standard Delphi TDatasource components,
which in turn feed the data through data pipeline
components. When this dataview is first created, it
assigns the customer data pipeline to the report.
The order and item pipelines are available to the
end user for use in subreports.

The data pipeline components within a dataview
create the interface between the dataview and the
other workspaces within the Report Designer.
Within the design workspace, the data pipelines for
all dataviews are listed in the data tree, the drop-
down list of the edit toolbar, and in the data dialog,
which is accessible from the main menu. Within
the calc workspace, the data pipelines appear in the
object list and in the code toolbox, making it easier
to code calculations involving field values.

We will discuss DADE, dataviews, and how to use
this part of ReportBuilder to maximize the produc-
tivity of your end users in the following section.

169Query Wizard

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Query Wizard

Overview
Within the data workspace, you can select data
from your database using an SQL query. This
functionality is provided via query-based data-
views, which can be visually created using the
Query Wizard and visually maintained using the
Query Designer.

Query Wizard: Create a Simple Query-
Based Dataview
The following series of screenshots shows how to
create a simple query-based dataview via the
Query Wizard.

1 Select File | New from within the data work-
space. The New Dialog will be displayed. Double-
click the Query Wizard icon.

2 Select the first table for the query. The cus-
tomer table has been selected.

3 Select the second table for the query. The order
table has been selected.

170 Query Wizard

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Query Wizard: Create a Simple Query-Based Dataview - cont.

4 When we return to the query wizard, both tables
are shown as selected.

5 Skip the fields page, since we want to select all
fields.

6 Skip the calculations page, since this query will
not contain calculations.

7 Skip the groups page, since this query will not
be grouped.

171Query Wizard

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Query Wizard: Create a Simple Query-Based Dataview - cont.

8 Skip the search criteria page; all records will be
selected.

9 Set the order to customer number, then order
number.

10 Name the dataview. The data pipeline name is
automatically generated when we name the data-
view. The next action will be to preview the data.

11 View the data to make sure the correct records
have been selected.

172 Query Wizard

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Query Wizard: Create a Simple Query-Based Dataview - cont.

12 Close the preview window. The dataview is
then created and displayed in the workspace.

From here we could proceed to the design work-
space where we could create a new report layout
based on this dataview either manually or through
the use of the Report Wizard.

173Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Query Designer

Overview
The Query Designer is used to modify query-based
dataviews. The query designer presents a series of
notebook tabs; each tab represents a different part
of the query. The last notebook tab in the Query
Designer shows the generated SQL and allows the
name of the dataview and data pipeline to be
changed. The Query Designer is pictured below.

Query Designer: Adding Search
Criteria
You can use the Query Designer to add or remove
search criteria from your query. Perform these
steps in order to add search criteria:

1 Click on the Search icon of the dataview to
launch the Query Designer.

2 From the list of fields at the top of the search
page, double-click on the field for which criteria
needs to be entered.

174 Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Query Designer: Adding Search Criteria - cont.

3 Click on the field that has been added to the list
of criteria at the bottom and select the operator.

4 Click in the edit box and enter the search criteria
value. This criteria will find all company names
that begin with the letter 'S'.

5 Click on the SQL tab to make sure the criteria
value is valid.

6 Close the Query Designer and click on the pre-
view icon.

175Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Query Designer: Adding Search Criteria - cont.

7 Preview the data and make sure that the
intended records are selected.

Create a Group Sum
The SQL 'GROUP BY' clause allows you to elimi-
nate rows in your query where the field values
repeat. For example, let's assume we have a data-
base table that contains order records. Each order
record has the customer number and the amount
paid. If we viewed the data in this table, we would
see that the value in the customer number field
repeats where there are multiple orders for a cus-
tomer.

We can use SQL to select data from the orders
table and calculate the total amount paid for each
customer. We can do this by specifying a group on
the customer number field. By specifying the
group, we are saying to the SQL engine: create one
row in the result set for each customer number
found. When the SQL engine runs the query, it
will find multiple records for some customers;
these records will be eliminated from the result set.
SQL allows us to perform calculations on these
repeated records and store the result in a new field
of the result set.

These types of calculations can be created on the
Calc tab of the Query Designer. Perform these
steps in order to sum the amount paid for all cus-
tomers in the orders table:

1 Click the 'Calc' icon to launch the Query
Designer.

2 Double-click the 'Amount Paid' field from the
selection list at the top of the page. Amount Paid
will be added to the list of calculations.

176 Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Create a Group Sum - cont.

3 Select 'Sum' as the function type for the calcula-
tion.

4 Enter the Field Alias you would like to use for
this calculated field.

5 Click the SQL tab to make sure the generated
SQL is valid.

6 Close the Query Designer and click the Preview
icon to preview the data.

177Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Create a Group Sum - cont.

7 Check the data to make sure the sum is calcu-
lated as expected.

178 Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Concatenate Fields
You can enter SQL expressions from the Calc tab
of the Query Designer. The following query
selects data from a table of employees. The table
has a first name and last name field. Perform these
steps in order to concatenate these two fields
together using the Query Designer:

1 Click the 'Calcs' icon to launch the Query
Designer.

2 Double-click the 'First Name' field from the
selection list at the top of the page. 'First Name'
will be added to the list of calculations.

3 Select 'Expression' as the function type for the
calculation.

4 Modify the widths of the 'Field SQL Alias' and
'Table SQL Alias' and 'Expression' columns in the
calculations list at the bottom of the page so that
there is enough space to enter the expression. The
figure below illustrates a sample expression.

179Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Concatenate Fields - cont.

5 Enter the Field Alias you would like to use for
this calculated field.

6 Click the SQL tab to make sure the generated
SQL is valid.

7 Close the Query Designer and click the Preview
icon to preview the data.

8 Check the data to make sure the field is calcu-
lated as expected.

180 Query Designer

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Edit SQL
There may be times when you need to utilize
advanced features of SQL that cannot be accessed
via the visual interface of the Query Designer. In
these cases, you can edit the SQL manually in the
Query Designer. Once you have edited the SQL
manually, you must always use the SQL tab of the
Query Designer to make future modifications.

Perform these steps in order to edit the SQL gener-
ated by the Query Designer:

1 Click on the SQL icon to launch the Query
Designer.

2 Right-click over the SQL text to display the
popup-menu.

3 Select the menu item. Click Yes to the message
dialog. You can now edit the SQL.

181Configuring DADE

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Configuring DADE

Overview
The first step in configuring DADE for your end
users involves setting the properties of the DataSet-
tings object of the Designer component. This
object contains the following properties:

SessionType
Use to specify the DADE plug-in being used. Each
DADE plug-in registers a corresponding session
type. For example, if you are using ADO data
access, then choose the ADOSession option.
ReportBuilder installs plug-ins to support the data
access components included with Delphi: ADO,
BDE, IBExpress, dbExpress. Many additional
plug-ins are available. Some are installed to
RBuilder\Demos\EndUser Databases and more are
available from the Download | DADE-plugins sec-
tion of our web site.

AllowEditSQL
Determines whether or not the end user can edit the
SQL in the Query Designer.

DatabaseName
The name of the database from which data will be
retrieved when the query executes.

DataDictionary
The data dictionary object that will convert raw
table and field names to aliases.

UseDataDictionary
Determines whether the data dictionary object
assigned to the DataDictionary property will be
used.

SQLType
Specifies the type of SQL Synatx generated: BDE-
Local, SQL1, SQL2. The BDELocal option can be
used for Paradox. For most modern database prod-
ucts use the SQL2 setting.

DatabaseType
Use the database type to select the specific data-
base product being used. This further refines the
SQL syntax to adhere to product specific varia-
tions.

CollationType
Used to tell ReportBuilder what type of collation is
used by your database: Ascii, Ansi, Variant. This is
important for supporting master/detail data tra-
versal by the report engine.

GuidCollationType
Used to tell ReportBuilder what type of Guid colla-
tion is used by your database: MSSQLServer,
MSAccess, Guid, String. This is important for sup-
porting master/detail data traversal when the link-
ing relationship is defined by a data field of type
Guid.

IsCaseSensitive
Used to tell ReportBuilder whether your database
is case sensitive. This is important for supporting
master/detail data traversal by the report engine.

182 Configuring DADE

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Data Settings
Once you have configured the data settings, you
may notice that a Data Settings menu option
appears on the File menu of the data workspace
when you run your application. This option dis-
plays a dialog that allows the end user to modify
the data settings. If you do not want the end user to
be able to change these settings, then you can set
the AllowDataSettingsChange property of the
Designer component to False.

183DADE Architecture

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
DADE Architecture

Overview
The Object Model containing the most important
classes of DADE is pictured below:

The inheritance relationships are indicated by tri-
angles in the above diagram. Where one class is
associated with another class, a line is used. If the
line terminates in a diamond shape, then it indi-
cates that the class actually forms part of the inter-
nal implementation of the component. For
instance, the TdaSQL class is part of the imple-
mentation of the TdaQueryDataView. The unit in
which each class is declared is indicated by the text
at the upper left corner of each containing shape.

Base Classes
DADE has a plug-in architecture that enables the
Query Tools to be used with any SQL based
TDataSet descendant. The following is an over-
view of the base classes that comprise the DADE
plug-in architecture. By creating descendants of
these classes, native support for SQL database
products can be implemented.

TdaDataView
Dataviews represent a set of data and are visually
created and maintained in the data workspace of
the Report Designer. Internally, a dataview creates
the data access objects necessary to connect a
report to data. The interface from the dataview
into the other workspaces of the Report Designer is
composed of the data pipelines, which are con-
tained by the dataview. A dataview must have at
least one data pipeline. A typical dataview will
contain one or more data pipelines, datasources,
and datasets.

TdaDataView contains the declarations of the
methods that descendants must implement. It is in
the ppClass unit because it declares a Report prop-
erty that refers to TppCustomReport. If you need
to know the main report with which a dataview is
associated, you can always use this property.

184 DADE Architecture

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
TdaSession
Contains the methods needed by the TdaSQL class
when editing (via the Query Wizard and Query
Designer) and generating SQL. Provides the table
names for a given database name and the database
driver name (i.e. 'Sybase').

TdaDataSet
Contains methods needed by the TdaSQL class for
generating SQL. It is used to get the field names
for a given table name and to check SQL state-
ments for validity.

TdaSQL
This is the main SQL editing and generation class.
The Query Wizard, Query Designer, and Data-
Views rely on this component. As the SQL is
designed visually, the SQL component maintains
an object-based description of the SQL query.
This description is used to generate the SQL. The
SQL object is saved as part of query-based data-
views.

TdaCustomDataView
This class further defines the dataview API and
implements the capability to save the dataview as a
set of objects.

TdaQueryDataView
This class contains the association to the TdaSQL
class.

DADE Plug-in Classes
DADE has a plug-in architecture that enables the
Query Tools to be used with any SQL based
TDataSet descendant. The following is an over-
view of the classes that comprise the ADO Plug-in.
All plug-ins follow this same class implementa-
tion.

TdaADOSession
Registers the ADOSession session type with
DADE. Responsible for retrieveing the list of
available ADOConnections and the list of available
table names for a specified connection.

TdaADODataSet
Responsible for retrieving field meta data for a
specified table or SQL query.

TdaADOQueryDataView
Manages an ADOQuery and TdaSQL object. The
Query Tools communicate with the TdaSQLOb-
ject. The ADOQueryDataView assigned the SQL
statement generated by the TdaSQLObject to the
ADOQuery.

TdaADOTemplateDataView
This class can be used when custom dataview tem-
plates are needed. Dataview templates utilize a
developer-supplied user-interface for the creation
and modification of the dataview. This is generally
done to replace the Query Wizard and Query
Designer with a totally customizable user-inter-
face.

TdaADOQueryTemplateDataView
This class can be used when custom dataview tem-
plates that contain a query are needed.

185Extending DADE

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Extending DADE

Overview
DADE is a flexible and extensible architecture that
enables developers to tailor the functionality deliv-
ered to meet the requirements of a particular appli-
cation. The most common ways in which DADE is
extended are as follows:

1 Dataview Templates
Create dataview templates to customize the data-
view creation process or to provide data pipeline
configurations that cannot be created via the built-
in query-based dataview.

2 Support for Database Products
Create DADE plug-ins that natively support addi-
tional data access component sets.

3 New Data Wizard
Create a new data wizard.

Dataview Templates
A dataview template is a special type of dataview
class that has been declared by you, the developer.
And while the visual representation of the dataview
in the data workspace remains the same as any dat-
aview, the user-interface used to create and modify
the dataview is totally dependant on what you want
to provide to end users. Dataview templates can be
used for anything from creating predefined rela-
tions between a set of tables to integrating a full-
blown query builder. In this section, we will show
how you can create a dataview template. But
before we do, let's take a look at what the end user
will see when she uses a dataview template.

Dataview Template: The End User View
1 When dataview templates are registered with
DADE, an additional tab is added to the New Items
dialog. The figure below shows what we would
see if we accessed the File | New menu option
within the data workspace:

186 Extending DADE

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Dataview Template: The End User View - cont.

2 Here we can see that six different dataview tem-
plates have been registered. After double-clicking
on the 'Order' template, the following screen would
appear:

3 This is a custom dialog created by the developer
of the Order dataview template. It allows the end
user to enter simple search and sort criteria. Once
we've done this and clicked OK, the completed data-
view will be displayed:

4 As you can see in the data pipeline list of this
dataview, this template has declared relationships
between the customer, order, and order items
tables. Each table is independent and has its own
data pipeline. By clicking on the Design tab and
accessing the Report | Data menu option, we can
see how this dataview has assigned the data pipe-
lines to the report:

The customer data pipeline is assigned to the
report. The order and item data pipelines are avail-
able, and we could create subreports and assign
them to these data pipelines. This sort of data pipe-
line configuration is not available from query-
based dataviews, which is why the developer chose
to create this dataview template.

187Extending DADE

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Dataview Template: The Implementation
This dataview template is implemented as an SQL
query on the customer table with nested detail
tables on the order and items tables. Some of the
fields from the order detail table are actually sup-
plied from the employee table, which is configured
as a lookup table:

A completed and working version of the order dat-
aview template is available in the
\Demos\EndUser\2. Custom DataView Templates\
directory within the main ReportBuilder directory.

Support for Database Products
DADE is built upon the concept of the dataview;
therefore, it is important to know the following
traits of the dataview:

• A dataview is responsible for creating the data
access objects required to connect a report to
data.

• A dataview must contain at least one data pipe-
line.

• A typical dataview will contain one or more data
pipelines, datasources, and datasets.

• Dataviews are created and maintained visually in
the data workspace of the report designer.

By implementing new descendants of several
classes within DADE, we can integrate native sup-
port for additional database products into DADE so
that the visual tools provided in the data workspace
(i.e. the Query Wizard, Query Designer, and cus-
tom dataview user-interfaces) can be used with that
database.

In the course of normal operation, the Query Wiz-
ard and Query Designer require certain information
from the database, such as a list of tables from
which data can be selected, or a list of fields for a
given table. These visual tools never directly refer-
ence any database objects in obtaining this infor-
mation, but instead rely on functionality provided
by the dataview.

188 Extending DADE

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - DATA
Classes
Implementing a QueryDataView descendant
requires us to define the following set of classes:

TdaChildADOQuery
• Descendant of TADOQuery that can be a child

of a DataView

• Override the HasParent method of Tcomponent
to return True

• Must be registered with the Delphi IDE via Reg-
isterNoIcon

TdaChildADOTable
• Descendant of TADOTable that can be a child

of a DataView

• Override the HasParent method of Tcomponent
to return True

• Must be registered with the Delphi IDE via Reg-
isterNoIcon

TdaADOSession
• Descendant of TppSession

• Implements GetDatabaseNames

• GetTableNames, etc.

TdaADODataSet
• Descendant of TppDataSet

• Implements GetFieldNames for SQL

TdaADOQueryDataView
• Descendant of TppQueryDataView

• Uses the above classes to create the required
Query DataSource Pipeline Report
connection

• Uses the TdaSQL object built by the QueryWiz-
ard to assign SQL to the ADOQuery, etc.

DADE Plug-ins:
If you have Delphi Enterprise, you can see these
classes in action by installing the ADO demo. The
following DADE Plug-ins are provided with
ReportBuilder Enterprise. Examples can be found
in \RBuilder\Demos\EndUser Databases.

• ADO

• IBX

• IBO

• Advantage

• DBISAM

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS

CODE

Introduction 195

The Calc Workspace 197

Writing RAP Code 205

Configuring RAP 209

Extending RAP 213

Debugging RAP Code 215

191Introduction

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
CODE

Introduction

Overview
RAP (Report Application Pascal) and the inte-
grated development environment that can be used
to create RAP programs are the result of the dis-
covery that a visual solution for data processing
and calculation was needed for end users. Even
though RAP consists of an object-oriented com-
piler and extensible architecture 'under the covers',
it appears as a simple, easy-to-use calc workspace
within the Report Designer. The calc workspace is
pictured below. The code editor window at the
bottom of the workspace shows a simple event
handler assigned to a line component.

The Report Application Programming language (or
RAP for short) is designed to allow developers and
end users to code calculations, event handlers, and
stand-alone procedures for use with ReportBuilder
Enterprise. RAP programs can be created, modi-
fied, compiled, and executed at run-time.

About RAP

RAP is easy to learn.
The RAP language is identical to Object Pascal. If
you know how to code Delphi event handlers, you
know how to code RAP; therefore, the learning
curve for Delphi developers is minimal.

RAP lets you work with objects and object
properties.
RAP provides full access to the report, bands,
groups, report components, data pipelines, and any
other objects you wish to pass along to the end
user. New objects can be created. Both the pub-
lished and public properties of objects are accessi-
ble, so end users can configure objects on-the-fly.

192 Introduction

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
RAP is portable.
Once you've created a set of event-handlers or
stand-alone procedures, you can save them as part
of the report definition. You can export and import
calculations from one report to another. You can
even save calculations to a file or database BLOB
field. And it can all be done at run-time, without
recompiling your application.

RAP has a scalable user interface.
• For casual end users, a simple Calculations dia-

log is accessible from the speedmenu of the new
TppVariable component. This dialog provides a
place for calculations to be entered and returned
via a single Result parameter. The calculation
result is then displayed in the variable when the
report prints.

• For more sophisticated users, RAP can be con-
figured to display as an additional tab in the
Report Designer. The new 'Calc' tab shows the
bands of the report in a tree view, along with the
associated variables. The end user can click on
the variables and code the calculation in a syn-
tax-sensitive edit window.

• The highest level of functionality is provided by
the 'Event' view. This capability shows all of the
report components in a tree view. When a com-
ponent is selected, all of the events for the com-
ponent are displayed. The user can then select
an event and code an event handler.

RAP is extensible.
RAP is delivered standard with the ability to com-
pile the most frequently used ReportBuilder and
Delphi objects. If you want end users to access
more than this, you can register additional RTTI
information with RAP. RAP will then be able to
compile your custom components. You can also
extend the language by adding new, built-in func-
tions and procedures which the users can call from
their RAP programs. These procedures are written
and compiled in Object Pascal and then registered
with RAP.

RAP is optimized.
RAP is an add-on language for ReportBuilder
Enterprise. However, ReportBuilder Enterprise
does not require RAP in order to compile. You can
install RAP and it will automatically appear in your
Report Designer. The Delphi units that comprise
RAP will only be added to your executable if you
use RAP in your report.

RAP is cool.
The wide feature set, object-based functionality,
and professional user interface makes RAP the lan-
guage to beat for reporting applications.

193The Calc Workspace

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
The Calc Workspace

Overview
The Calc workspace is the development environ-
ment for RAP. With all of the RAP options avail-
able, the Calc workspace is a powerful Pascal
development environment. For most end users, this
may be more than they need. Judging your users'
needs, you should define just how much of the
RAP IDE to make available to them.

You can include the Calc workspace in your end
user projects by adding raIDE to the uses clause of
one of your units. When your users select the Calc
tab, they will see the RAP IDE. The RAP IDE
consists of:

• The Code Explorer
• The Code Editor
• The Message Window
• The Code Toolbox

The RAP IDE

A Code Explorer: Contains the tree view (left) and C Message Window: Messages from the compiler
 the list view (right) are presented here

 B Code Editor: The space where you code and D The Code Toolbox: Contains pieces of code that
you compile the report drag into the Code Editor

D

B

A

C

194 The Calc Workspace

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
The Code Explorer
The Code Explorer is contained in the upper left
and right panes of the Calc workspace.

The left pane contains a tree view — use this to
navigate your report's code. The right pane con-
tains a list view — it will display a variety of items
depending on what is selected in the tree view. By
right clicking on the tree you can display a context
menu that allows you to control the behavior of the
Code Explorer.

Variables View

The Variables view of the Code Explorer is dis-
played by right-clicking the left pane and selecting
Variables from the context menu.

The Variables view of the Code Explorer is dis-
played by right-clicking the left pane and selecting
Variables from the context menu.

Events View

The Events view of the Code Explorer is displayed
by right-clicking the left pane and selecting Events
from the context menu.

This view displays a listing of all components con-
tained within the report. The right pane displays
any events associated with the currently selected
component. Selecting an event will display the
event handler, if one exists.

This view is good for viewing all report objects and
their events.

195The Calc Workspace

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
In the treeview, you will notice small arrow shaped
images to the left of some nodes. These are Compi-
lation State Indicators. They are used to tell you
where your code is and what state it is in. There are
five possible indicators:

 No symbol. Indicates that this component does
not have any event handlers assigned, nor does it
contain any components which have event han-
dlers.

 Red, not filled. Indicates that this component
does not have any event handlers, but contains
components which do. The red color indicates that
one or more of the nested components has event
handlers which do not compile.

 Red, filled. Indicates that this component con-
tains event handlers and that somewhere on this
branch there is code that does not compile. If there
is no code contained in components below this one,
then the problem code is in this component. How-
ever, if there is code below this component, the
problem may be in a child component's event han-
dlers, in this component's event handlers or both.

If a child component's code does not compile, the
parent component will still display a red arrow
even though its own code may compile.

 Green, not filled. Indicates that this component
does not have any event handlers assigned, but
contains other components which do. The green
color indicates that the event handlers of the con-
tained components have compiled successfully.

 Green, filled. Indicates that this component has
event handlers assigned. The green color indicates
that these event handlers, and any assigned to com-
ponents nested within this one, have successfully
compiled.

Module View

The Module view of the Code Explorer is dis-
played by right-clicking the left pane and selecting
Module from the context menu.

This view displays items which are visible to all
event handlers of the report:

• Declarations – These are variables and constants
that are globally visible throughout the report.

• Events – These are, in essence, the report's
events. OnCreate and OnDestroy are good places
for initialization and finalization code such as
creating and freeing objects and initializing vari-
ables.

• Programs – These are procedures and functions
that are globally visible throughout the report
and can therefore be called from any event han-
dler.

• Event Handlers – These are all event handlers
that have been implemented in the report.

196 The Calc Workspace

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Global Scoping

Items declared in the Global section are effectively
visible throughout the module and to all child sub-
reports. When compiling, the compiler tries to
resolve all references within the current module. If
it can't find an identifier, it begins looking in the
next parent report's global section and continues
this up to the main report.

Consider the following scenario involving multiple
level subreports:

Suppose we declare, in the main report's Global
section, a variable, MyGlobalString: String; This
variable would be visible throughout the main
report and all subreports as the compiler will even-
tually find the declaration in the parent of any sub-
report.

However suppose, again, that we declare MyGlo-
balString in the Global section of sbrOrderDetail.
Now the variable is visible to sbrOrderDetail and
to SubReport1 but not visible to sbrVendorSum-
mary, SubReport2 or even the main report.

Just keep in mind: declarations are visible to any
child subreports of the current report.

The Code Editor
The Code Editor is the place where you actually
write and modify RAP code.

This syntax-sensitive editor is similar to the one
found in Delphi, with the exception that it displays
only one procedure at a time. Whatever the cur-
rently selected item is (event handler, procedure,
function, variable declarations, etc.), only the code
for that item is displayed in the Code Editor. When
an item is selected, the editor will either contain the
code implementation, or will be blank if no imple-
mentation exists. If no implementation exists, you
can create one by clicking in the editor. You can
then enter code by either typing or by dragging
items from the Code Toolbox and dropping them
into the editor. If an item is dropped into the editor
over a section of selected code, the selected code
will be replaced.

197The Calc Workspace

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
The Code Editor's context menu contains the fol-
lowing items:

New

New has the same effect as clicking in the Code
Editor. It is only enabled if there is no implementa-
tion for the item currently selected in the Code
Explorer.

Compile

Compile activates the RAP compiler to attempt to
compile the current procedure and any procedures
upon which the current one depends.

Save

The Calc workspace maintains an intermediate
buffer for the Code Editor. Selecting Save will
commit the current contents of the Code Editor to
the buffer; it will not save the entire report. Select-
ing Save has the same effect as navigating away
from, and then returning to the current procedure.

Revert

Use Revert to replace the contents of the Code Edi-
tor with what is currently contained in the code
buffer. This has the effect of removing all changes
since the last save.

Delete

Select Delete to remove the current procedure
entirely.

Message Window
The Message Window functions in essentially the
same manner as Delphi's message window. Mes-
sages from the compiler are presented here. You
can navigate to the location of compiler errors by
double-clicking the error message.

The Code Toolbox
The Code Toolbox is a visual code repository. It
contains most of the identifiers and code elements
that the RAP compiler recognizes.

The Code Toolbox enables you to:

• View identifiers grouped by available data, visi-
ble object properties or language features

• Generate code by dragging identifiers into the
Code Editor. Functions dragged into the editor
will generate a place-holder parameter list. For
example, the following code is generated when
you drag the Copy function into the Code Editor:

 Copy(S, Index, Count);

Each tab of the Code Toolbox consists of a tree-
view and a list of identifiers. The treeview allows
you to navigate groups of identifiers listed on each
tab.

198 The Calc Workspace

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Data Tab

The Data tab of the Code Toolbox displays data
pipelines and fields, allowing you to drag and drop
field references into the Code Editor.

Selecting a pipeline from the list will display all of
the fields in that pipeline as well as data type and
size information for the fields.

To insert a field value into the code editing win-
dow, select the field and drag it into the Code Edi-
tor. The code necessary to retrieve the field value
from the pipeline will be generated. For example,
dragging the 'City' field from the Code Toolbox
pictured above would result in this code:

Value := Clients[’City’]

Objects Tab

The Objects tab of the Code Toolbox displays
report objects and their properties, allowing you to
drag and drop properties into the Code Editor.

Selecting an object from the tree will display a list
of that object's properties.

To insert a property into the Code Editor, select the
property and drag it into the Code Editor. The code
necessary to retrieve the value of the property or
call the method will be generated. For example,
dragging the 'AutoSize' property from the Code
Toolbox pictured above would result in the follow-
ing code:

Label1.AutoSize

199The Calc Workspace

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Language Tab

The Language tab of the Code Toolbox displays
RAP language elements, allowing you to drag and
drop elements into the Code Editor.

Selecting a category from the tree will display a list
of elements for that category.

To insert an element into the Code Editor, select
the element and drag it to the Code Editor. The
code necessary to reference or use the element will
be generated. Note that when you drop an item
such as a function call, the function's parameter list
is provided. For instance, if you drag Copy into the
Code Editor, it will expand as:

Copy(S, Index, Count);

When you register pass-through functions with
RAP, they will appear automatically in the Func-
tion section of the Language Tab. Identifiers listed
in the Toolbox will also display relevant informa-
tion such as Type, Size, Signature, etc. Identifiers
which appear in the Code Toolbox are registered
with RAP via RAP's extensible architecture. You
can use this architecture to register your own pass-
through functions and objects with RAP — this
allows your new functions to appear in the Code
Toolbox and to be recognized by the compiler.

201Writing RAP Code

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Writing RAP Code

Programs in RAP
All code in a report is contained in the Code Mod-
ule. The Code Module contains all the event han-
dlers for objects contained in the Report. There is
also a global section that can contain module level
events, declarations, procedures and functions.
This part of the Code Module is visible from the
Module view of the Code Explorer.

The programs and variables declared in the global
section of a module are visible to all subreport code
modules in the report. Event handlers appear much
as they would in Delphi, with the exception that the
Sender parameter is omitted from the signature —
this is due to the fact that event handlers can only
be assigned to one object in RAP, whereas Delphi
allows the same event handler to be assigned to
multiple events.

Coding an Event Handler
In order to code a new event handler, simple select
an event in the Code Explorer and click in the
white space of the Code Editor. Both the signature
and the begin/end pair for the event handler will be
generated automatically. You can then begin enter-
ing your code. A typical event handler would
appear as:

 procedure Variable1OnCalc (var Value: Variant);

 begin

 end;

Note: When you are working in the Variables view
of the Code Explorer, the event handler signature
and begin/end pair will not appear in the Code Edi-
tor. You will see only a single line for assigning the
Value:

 Value :=

In this mode the Code Explorer displays only vari-
ables and is, in a sense, equating variables with the
value returned by the OnCalc event. This is valu-
able for limiting the amount of functionality you
wish to reveal to your users.

202 Writing RAP Code

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Compiling Event Handlers
The RAP compiler attempts compilation of the
entire module automatically when any of the fol-
lowing happen:

• You load a report.
• You select the Calc tab within the Report

Designer.
• You switch views in the Code Explorer.

It is also possible to compile the currently selected
event handler. To do this, right-click over the Code
Editor and select Compile from the popup menu.
The compiler will check the global sections and
any other programs needed to compile the current
event handler.

Declaring Local Variables
Local variable declarations in RAP are just the
same as in Object Pascal. To add a local variable
declaration to a function, activate the Code Editor
for the current item and place the cursor between
the function's declaration and the begin. Type var
and declare your variables just as you would in
Delphi.

Declaring Local Constants
Local constant declarations in RAP are just the
same as in Object Pascal. To add a local constant
declaration to a function, activate the Code Editor
for the current item and place the cursor between
the function's declaration and the begin. Type const
and declare your constants just as you would in
Delphi.

Declaring Global Variables
To declare a global variable, right-click on the
Code Explorer and select Module. The treeview
will change to display the global section. Click on
the Declarations node – this will display two items
in the listview: Constants and Variables.

Select the Variables item. If you have already
declared some variables, they will be displayed in
the Code Editor. If the Code Editor is blank, right-
click the Variables item and select New – this will
activate the Code Editor and add var to the first
line.

Declare your variables using standard Object Pas-
cal syntax.

 var
 myGlobalString: String;
 myGlobalInteger: Integer;
 myStringList: TStringList;

203Writing RAP Code

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Declaring Global Constants
To declare a global constant, right-click on the
Code Explorer and select Module. The treeview
will change to display the global section. Click on
the Declarations node – this will display two items
in the listview: Constants and Variables.

Select the Constants item. If you have already
declared some constants, they will be displayed in
the Code Editor. If the Code Editor is blank, right-
click the Constants item and select New – this will
activate the Code Editor and add const to the first
line.

Declare your constants using standard Object Pas-
cal syntax.

 const
 csMyConstString = ’What is hip?’;
 ciMyBigAnswer = 42;

Declaring Global Procedures and Func-
tions
The global section of the Code Module can contain
functions visible throughout the module and to any
subreports below the current report. To declare
such functions, right-click on the Code Explorer
and select Module. The treeview will change to
display the global section. Click on the Programs
node – the listview will display any extant func-
tions. If you have not declared any, the listview
will be empty.

Right-click on an empty space in the listview –
note that the first two menu items are New Func-
tion and New Procedure. Selecting either of these
items will create a declaration and an implementa-
tion stub.

If you select New Function, a new function named
GlobalFunction1 will be added to the listview and
the following implementation will be added to the
Code Editor:

 function GlobalFunction1: Variant;
 begin

 Result :=

 end;

204 Writing RAP Code

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Likewise, if you select New Procedure, a new pro-
cedure named GlobalProcedure1 will be added to
the listview and the following implementation will
be added to the Code Editor:

 procedure GlobalProcedure1;
 begin

 end;

Procedure and Function Parameters
Function parameter lists are the same in RAP as in
Object Pascal.

Because event handlers in RAP cannot apply to
more than one event, event handlers in RAP do not
have a Sender parameter in their signature.

Calling Procedures and Functions
Calling a function in RAP is no different than in
Object Pascal. As long as the function is in scope,
you can call it.

When calling a parent report's global function from
within a subreport, you do not need to qualify the
identifier with the parent report's name.

In other words, if your Main report has a global
procedure, GlobalDoSomething, and you want to
call it from within SubReportA's OnCreate event,
you do not have to say Main.GlobalDoSomething.
Merely calling GlobalDoSomething will suffice.

205Configuring RAP

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Configuring RAP

End User Configurations
When building an end user solution, you must
decide how much of RAP's functionality to expose
to your users. RAP allows a continuum from a cal-
culations dialog to a full development environ-
ment. Likewise, you can give your users only the
base language features included in RAP, or you
can expose new, custom pass-through functions,
make RAP aware of your own classes and even
allow users to display custom forms you design.

The two main properties used for scaling the RAP
environment are TppDesigner.RAPOptions and
TppDesigner.RAPInterface.

The RAPInterface property controls how the Calc
workspace will be presented to the user — as a dia-
log, a tab or both.

When RAP is presented as a Calc tab in the Report
Designer, RAPOptions allows you to specify how
much the user is able to view and edit.

The RAP user interface can be configured to meet
the needs of your end users. There are two basic
configurations available:

1 Calculations Dialog

For casual end users, a simple Calculations dialog
is accessible from the speedmenu of the TppVari-
able component. This dialog provides a place for
calculations to be entered and returned via a single
Result parameter. The calculation result is then
displayed in the variable when the report prints.

In order to configure the user interface to provide
this level of functionality, set the RAPInterface
riNotebookTab property to False and the riDialog
property to True. The figure below illustrates the
Calculations... option available when the end user
accesses the speed menu of a variable.

206 Configuring RAP

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
2 Calc Tab

In this configuration, your users have the same
functionality as in the Calc Dialog, but it is avail-
able in the Calc tab. In the Calc dialog, the Code
Explorer is not shown since, in that dialog, we deal
with only one variable at a time. However, in the
Calc tab, the explorer is shown. In order to config-
ure the user interface to provide this level of func-
tionality, set the RAPInterface riNotebookTab
property to True and set all of the RAPOptions to
True. When the Report Designer is displayed, the
Calc tab will be visible. If you right-click on the
treeview on the left, a speed menu that shows the
different views of calculations available will be
displayed:

A Variables

This view shows the variables in each band of the
report and any variables contained in the currently
selected band. The Calc tab makes it easier to see
the code associated with any variables in the
report, but still keeps the concept of events hidden
from the user. Selecting a variable displays the
OnCalc event handler, if one exists.

B Events

This view shows the report and all of the objects
within it. The user has access to all the report
objects' events, and can code event handlers for
them. The right pane displays any events associ-
ated with the currently selected component.
Selecting an event will display the event handler,
in one exists. An event handler can be coded for
any object. This view is good for viewing all
report objects and their events.

C Module

Finally, to expose all the power of the Calc work-
space you can add the global settings to RAPOp-
tions. This allows the user to see and edit
everything available in RAP. This view displays
items which are visible to all event handlers of the
report: global declarations, functions, programs,
and event handlers.

207Configuring RAP

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
• Declarations - The variables and constants that
are globally visible throughout the report.

• Events - These are, in sequence, the report’s
events. In the case where the preview window is
displayed, OnCreate and OnDestroy fire when
the window is opened and closed, respectively.
This is different from Report.BeforePrint and
AfterPrint in that those methods will fire each
time Report.Print is called. OnCreate and OnDe-
stroy are good places for initialization and final-
ization code such as creating and freeing objects
and initializing variables.

• Programs - The procedures and functions that
are globally visible throughout the report and can
therefore be called from any event handler.

• Event handlers - All event handlers that have
been implemented in the report.

209Extending RAP

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Extending RAP

RAP Pass-Through Functions
At the heart of RAP is a run-time compiler that
executes your users' code independent of Delphi's
compiler. Therefore RAP's compiler has its own
independent set of recognizable tokens. In other
words, RAP is a subset of Object Pascal.

The method for making the RAP compiler aware of
functions is to declare descendants of TraSystem-
Function – one for each function – and to register
them with the compiler using raRegisterFunction.
Each descendant class overrides ExecuteFunction
– this method tells the RAP compiler what to do
when a function name is encountered in the users'
code, thus passing-through the true Delphi func-
tionality to the end user.

For example, when the RAP compiler comes upon
the Copy function, it executes the ExecuteFunction
method which, in essence, tells RAP how to assign
the function's parameter list, then calls Delphi's
Copy function.

For examples of registering new pass-through
functions, see the main RAP demo:
RBuilder\Demos\0. RAP\1. Main\RAP.dpr –
reports #31-33. Also see the Adding Functions
Tutorial.

Adding Functions to the Code Toolbox
While the Language tab of the Code Toolbox con-
tains many useful functions for you and your user,
it is sometimes necessary to add functionality. You
can register a new pass-through function with RAP
quite easily. The steps are:

1 Identify a Delphi function to call. This can be a
function you have written, a DLL call, a Win API
call or a standard VCL function.

2 Create a TraSystemFunction descendant.

3 Return the signature of your procedure in the
GetSignature method.

4 Indicate whether the call HasParams and
IsFunction via these two boolean methods.

5 Make the actual call to the Delphi function or
procedure in the ExecuteFunction method.

6 Register your new function with RAP via a call
to raRegisterFunction. Place this call in the initial-
ization section of the unit containing the descen-
dant class.

7 Add this unit to your project.

When you run the application, you will see your
new function in the language tab of the Code Tool-
box. Also, you will be able to call the function
from any RAP event handlers or programs you cre-
ate. For a detailed tutorial, see Adding New Func-
tions to RAP.

210 Extending RAP

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Adding Classes and Properties via
RTTI
The report components in the RCL are all surfaced
in RAP. In addition, you will notice that the com-
piler knows about TStrings, TStringList and TList.
It is possible to make RAP aware of other objects
you may wish to expose within the Calc work-
space. For instance, you might want your users to
be able to refer to TmyUniversalFinancialCompo-
nent.

To do so, see Extending the RAP RTTI. This tuto-
rial will show you not only how to expose your
new class, but how to make that class's public
properties and methods available as well.

211Debugging RAP Code

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Debugging RAP Code

CodeSite Support
There is no integrated debugging for RAP – that's a
bit beyond the scope of the product. However,
there is an option to provide support for CodeSite –
Raize Software Solutions' excellent debugging
tool.

In order for you, as a developer, to use this option,
you must have a licensed copy of CodeSite
installed on your computer. If you wish to provide
this support for your users, your users must have
licensed copies of CodeSite installed.

RAP's support of CodeSite in no way changes the
licensing agreement of Raize Software Solutions;
anyone utilizing RAP's support of CodeSite must
have a properly registered version of CodeSite.

Now, that being said, in order to enable the
CodeSite support at run-time, you must add the
raCSFuncs unit to your uses clause. This will regis-
ter the CodeSite pass-through functions with RAP,
thus making them available in the Code Toolbox.

To enable the CodeSite support at design-time, you
will need to compile and install a package into
Delphi. See the ReadMe.doc file in your
RBuilder\Demos\0. RAP\2. CodeSite directory for
instructions. Most of the CodeSite calls are made
available, some with a few modifications due to
RAP's architecture.

A few notable items :
• CodeSite's Enabled property is available as the

csEnable procedure in RAP. Pass in a boolean
value to enable or disable CodeSite.

• Since RAP does not yet support Record types,
the SendPoint and SendPointEx functions were
changed to accept integers, X and Y instead of a
TPoint and the SendRect and SendRectEx func-
tions were changed to accept integers, Left, Top,
Right and Bottom instead of a TRect. The pass-
through functions will, in turn, map these inte-
gers into the proper values when calling the cor-
responding CodeSite methods.

• There is a demo project showing the use of the
CodeSite pass-through functions in
RBuilder\Demos\0. RAP\1. CodeSite.

212 Debugging RAP Code

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Using the CodeSite Functions
For those unfamiliar with CodeSite, here are some
ideas for how to use it with RAP. Note that this is
not a primer on using CodeSite; see the CodeSite
documentation for that information.

Let us say, for instance, that a TppVariable is not
displaying a value you think it should and you want
to make sure that a section of code is actually being
executed. You might add the following code to the
variable's OnCalc event:

This is a fairly simple example, but you can see
that the liberal use of CodeSite calls can be essen-
tially like stepping through code, looking at values.

There is a demo project showing the use of the
CodeSite pass-through functions in
RBuilder\Demos\0. RAP\2. CodeSite.

Code Variable1OnCalc Event

procedure Variable1OnCalc(var Value: Variant);
var
 lsLabelText: String;
begin

 csEnterMethod('Variable1OnCalc');
 csSendString('TaxRate', plCustomer['TaxRate']);
 if plCustomer['TaxRate'] > 8 then
 begin
 csSendBoolean('Detail.Overflow', Detail.Overflow);
 if Detail.Overflow then
 begin
 lsLabelText := 'Continued...';

 Value := '';
 end
 else
 begin
 lsLabelText := plCustomer['Company'];
 Value := GetMyValue;
 end;
 csSendString('Value', Value);
 end
 else
 begin
 csSendWarning('Invalid TaxRate');
 Value := 'Invalid';
 end;
 csExitMethod('Variable1OnCalc');

end;

213Debugging RAP Code

REPORTBUILDER ENTERPRISE EDITION FUNDAMENTALS - CODE
Conditionally Compiling CodeSite Sup-
port
Repeatedly adding and removing CodeSite calls
can be troublesome, especially if you have many of
them riddling your code. For that reason, the Code-
Site calls can be conditionally compiled. All of the
CodeSite functions in the raCSFuncs unit have
conditional statements around their ExecuteFunc-
tion implementations and at the beginning of the
unit is the line:

 {x$DEFINE CODESITE}

In order to enable the function implementations,
remove the "x" from the beginning of the line. To
disable them, add the "x". This will allow you to
leave all of the CodeSite calls in the code without
activating the CodeSite object on your user's
machine.

In other words, to enable CodeSite support for your
report, do the following:

1 Open the raCSFuncs unit.

2 Scroll to the top of the unit, just below the inter-
face clause.

3 Remove the 'x' from the line:

 {x$DEFINE CODESITE}

This will enable CodeSite support.

4 Save the unit.

5 Rebuild your project by selecting Build All in
Delphi.

To disable CodeSite support for your report while
not removing the CodeSite calls themselves, do the
following:

1 Open the raCSFuncs unit.

2 Scroll to the top of the unit, just below the inter-
face clause.

3 To enable CodeSite support, add an ’x’ at the
beginning of the line between the '{' and the '$'.

 {$DEFINE CODESITE}

4 Add an 'x'

5 Save the unit.

6 Rebuild your project by selecting Build All in
Delphi.

REPORTBUILDER ENTERPRISE FUNDAMENTALS

DESIGN

The Report Explorer 221

217The Report Explorer

REPORTBUILDER ENTERPRISE FUNDAMENTALS - DESIGN
DESIGN

The Report Explorer

The Report Explorer component allows you to
deploy a Windows Explorer interface that your end
users can use to organize their reports. The Report
Explorer handles all operations via data pipelines;
therefore, the folder structure and all of items
within it can be saved to database tables. This
interface presents a minimal learning curve, as
most users are familiar with the operation of the
Explorer. The Report Explorer user-interface is
pictured below:

Report Explorer Toolbar
The action that each button on the Report Explorer
toolbar performs is described below.

 Up One Level
When a folder is selected, use this button to select
the parent folder.

 New Folder
Creates a new folder within the currently selected
folder.

 New Report
Creates a new report and displays the Report
Designer.

 Open Report
Opens the currently selected report and displays it
in the designer.

 Print
Prints the currently selected report.

 Print Preview
Opens the currently selected report and displays it
in the print preview window.

 Email
Generates the selected report to PDF and then
Launches the end-user's default mail client with the
report PDF attached.

.

REPORTBUILDER ENTERPRISE FUNDAMENTALS - PRINT

PRINT

End-User Options 225

221End-User Options

REPORTBUILDER ENTERPRISE FUNDAMENTALS - PRINT
PRINT

End-User Options

Overview
You can control whether end users can Archive or
Print to any of the supported file formats using the
following properties of the Report component:

• AllowPrintToArchive

• AllowPrintToFile

Setting AllowPrintToArchive to True will enable
end users to archive reports. You would then need
to provide a user interface for previewing and
printing the archived files using the ArchiveReader
component. For an example of how to use the
ArchiveReader, see example 151
(..\RBuilder\Demos\Reports\dm0151.pas).

Setting AllowPrintToFile to True will enable end
users to print to the any of the available file

formats. You can control which file formats are
available to end users via the device class registra-
tion procedures. For example, the following code
would remove the ReportTextFileDevice from the
list of available file formats:

uses
ppDevice, ppFilDev;

ppUnRegisterDevice(TppReportTextFileDevice);

End-User Applications
In order to set the AllowPrintToArchive and
AllowPrintToFile properties within the context of
an end-user application, the OnNew and OnLoad
events of the Report.Template object should be
used to set the default properties of the report. For
example, you would add the code below to the
main form in order to create the end-user applica-
tion.

Code Coding the main form of an end-user application

procedure TmyEndUserSolution.FormCreate(Sender: TObject);
begin

{assign event-handler to template events}
ppReport1.Template.OnNew := ReportTemplateEvent;
ppReport1.Template.OnLoadEnd := ReportTemplateEvent;

{remove the report text file device }
ppUnRegisterDevice(TppReportTextFileDevice);

end;

procedure TmyEndUserSolution.ReportTemplateEvent(Sender: TObject);
begin

{set default report properties}
ppReport1.AllowPrintToArchive := True;
ppReport1.AllowPrintToFile := True;

end;

REPORTBUILDER ENTERPRISE FUNDAMENTALS

DEPLOY

Summary 229

225Summary

REPORTBUILDER ENTERPRISE FUNDAMENTALS - DEPLOY
DEPLOY

Summary

Overview
There are two totally different but vital issues
involved in deciding how you will deploy your
application:

1 How to deploy ReportBuilder as part of your
application

2 How to deploy the reports created with Report-
Builder as part of your application

Application Deployment
When creating your application exe, you can
choose to either compile everything into one exe-
cutable, or you can choose to distribute the pack-
ages provided with Delphi, ReportBuilder, or any
other components you are utilizing in your applica-
tion as separate files. The latter option is referred
to as 'distributing with packages' (packages here
refers to a Delphi compatible DLL) and results in a
smaller, more efficient executable file.

These two approaches for deploying your applica-
tion are discussed later in this section.

Report Deployment
The second part of deployment involves determin-
ing how to deploy the reports created with Report-
Builder as part of your application. ReportBuilder
provides the most flexible deployment options of
any reporting product on the market. The most
commonly used deployment strategies are as fol-
lows:

1 End-User Reporting Solutions
The end-user reporting solution uses the Report
Explorer to manage reports stored in a database.
There are two deployment options for distributing
the end-user database tables.

A Local End-User Database

In this scenario, each end user has a local copy of
the end-user tables that are used as a personal data-
base for storing reports.

B Shared End-User Database

In this scenario, there is a single copy of the end-
user tables that are used as a common database for
storing all reports.

226 Summary

REPORTBUILDER ENTERPRISE FUNDAMENTALS - DEPLOY
2 Standard Reporting Solutions
A standard reporting solution refers to one in
which the developer creates reports that may be
executed by the end user.

A Compile reports into the executable.

Allow the report component to reside in an invisi-
ble form along with the necessary data access
objects. When it is time to print the report, instan-
tiate the form and call the Print method. You could
slightly vary this architecture by using a data mod-
ule as a container for the data access objects. This
method requires the form to contain the ppReport
component.

B Compile reports into a package.

Similar to option A, but rather than compile the
forms containing the reports into the executable,
the report forms are compiled into a package. The
advantage of this approach is that it optimizes the
size of the executable and dynamically loads the
package containing the reports as needed.

C Distribute report template files.

Place all the data access components for the reports
in a data module. Place a single report component
that uses the data module on the form. Create all of
the report layouts via this one report component,
saving each one down to a separate report layout
file. When it is time to print the report, load the
report from file and call the Print method.

D Distribute a report database.

Use all of the same steps as option C, but save the
report definitions to a database BLOB field instead
of separate files. With this approach you can save
all of your report definitions in one database table.

A full-featured implementation of Option A above
is provided in the 'Building a Reporting Applica-
tion' tutorial in the Developer's Guide. Option A
has the advantage of requiring the least code. The
main advantage of options C and D is that you can
change report layouts and redeploy them to your
end users with regenerating your executable.
Because Option A compiles the report layouts into
the executable, it requires a recompile any time a
report must be changed. In terms of report layout
load time or print speed, all options are essentially
equal.

2239REPORT TUTORIALS

REPORT TUTORIALS

Creating a Report via the Data Tree 233

Creating a Report via the Report Wizard 241

A Simple Report the Hard Way 251

Groups, Calculations, and the Summary Band 259

Using Regions to Logically Group Dynamic Components 275

Forms Emulation with a WMF Image 285

Master Detail Report 293

Master Detail Detail Report 307

Interactive Previewing with Drill-Down Subreports 319

Hooking Reports together with Section-Style Subreports 323

Using Columns to Create Mailing Labels 333

Printing to a Text File 337

Printing from a Text File 341

Using the JITPipeline to Print from a StringGrid 345

Using the Rich Text Component for Mail/Merge 349

Creating a Crosstab 353

229Creating a Report Via the Data Tree

REPORT TUTORIALS
REPORT TUTORIALS

Creating a Report Via the Data Tree

Overview
This tutorial will show you how to do the follow-
ing:

• Use the Data Tree

• Work with the Report Designer

• Create and configure the most common report
components

Create a Tutorial Folder
1 Access the Windows Explorer.

2 Create a folder on the root of your hard drive.

3 Name the folder My RB Tutorials.

Note: When installing new versions, the RB instal-
lation program will delete the existing RB install
directory. For this reason, we suggest creating the
tutorials directory either on the root or somewhere
outside of the directory for RB.

Create a New Application
1 Run Delphi.

2 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

3 Set the Form name to 'frmViaDataTree'.

4 Select File | Save As from the Delphi menu and
save the form under the name rbViaDT in the My
RB Tutorials directory.

5 Select View | Project Manager from the main
menu.

6 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

230 Creating a Report Via the Data Tree

REPORT TUTORIALS
7 Save the project under the name rbDTProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Create a Table, DataSource, and
DataPipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblCustomer
TableName customer.db

4 Select the Data Access tab of the Delphi Com-
ponent palette.

5 Add a DataSource component to the form.

6 Configure the DataSource component:

DataSet tblCustomer
Name dsCustomer

7 Select the RBuilder tab of the Delphi compo-
nent palette.

8 Add a DBPipeline component to the form.

9 Configure the DBPipeline component:

DataSource dsCustomer
Name plCustomer

Create a Report and Connect it to the
Data
1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plCustomer
Name rbCustomerList

Invoke the Report Designer and Set the
Paper Orientation
1 Double-click on the Report component to dis-
play the Report Designer.

2 Size and move the Report Designer window so
that the Object Inspector is visible.

3 Select the File | Page Setup option from the
Report Designer main menu.

4 Click the Paper Size tab and change the paper
orientation from Portrait to Landscape, then click
the OK button.

Set the Header Band Height to 1 inch
1 Place the mouse over the gray divider entitled
'^ Header'. The cursor should change to a double-
sided arrow. Hold down the left mouse button,
drag down a short distance, and release the mouse
button. Check the vertical ruler on the left and
drag down until you can see the 2 inch mark.

2 Drag the band divider up until the top guide
indicates you have reached the 1 inch mark.

Note: As you drag the band divider downward to
increase the height, the height of the ruler grows
with it. As you drag the band divider upward, a
guide is displayed on the ruler to indicate the new
height of the band.

231Creating a Report Via the Data Tree

REPORT TUTORIALS
3 Right-click over the white space of the header
band and access the Position dialog. The value for
the height should be 1.

Create Labels in the Header Band
1 Click the Label component icon on the
Report Designer component palette.

2 Click on the left side of the header band. A
label will be created in the header band. It will
become the current selection in the Object Inspec-
tor.

3 Locate the Edit box at the upper left corner of
the Report Designer. Select the text inside it and
type Customer List.

4 Locate the font controls on the Format bar.

Note: The font controls appear to the right of the
Edit box and provide the following functions:

• Font Name drop-down list
• Font Size drop-down list
• Bold
• Italic
• Underline Font Style
• Text Alignment
• Font Color
• Highlight Color

5 Set the font:

Font Name Times New Roman
Font Size 12
Font Style Bold & Italic

6 Position the label at the upper left corner of the
header band.

7 Place another label near the center of the header
band.

8 Configure the label:

Caption Marine Adventures &
Sunken Treasure Co.

Font Name Times New Roman
Font Size 16
Font Style Bold & Italic
Text Alignment Centered

9 Set the font color to maroon by clicking on the

right side of the Font Color icon to display the
drop-down Color Palette, then clicking on the
maroon colored square.

Note: When you select a color via the Font or
Highlight Color icons, the selected color is dis-
played below the icon. You can then click on the
icon directly (without re-displaying the drop-down
color palette) and the currently selected component
or components will be set to that color.

10 Position the Marine Adventures label at the top
of the header band workspace area.

11 Select View | Toolbars | Align or Space from the
Report Designer main menu. The toolbar should
appear as a floating window.

12 Click and drag the toolbar window to the left
side of the Report Designer and position it so that it
docks to the left of the vertical ruler.

13 Center the label by clicking the Center Horizon-

tally icon on the Align or Space toolbar.

la
yo

ut
 c

he
ck

232 Creating a Report Via the Data Tree

REPORT TUTORIALS
Use the Data Tree to Lay Out the
Customer Information
1 Select View | Toolbars | Data Tree. Position the
Data Tree to the left of the Report Designer.

2 Click the Layout tab at the bottom of the Data
Tree and configure the drag-and-drop settings as
follows:

Create All
Style Tabular
Label Grid True

Label Font Name Times New Roman
Label Font Style Bold
Label Font Size 12 point
Label Font Color Maroon

Field Grid True
Field Font Name Times New Roman
Field Font Style Regular
Field Font Size 10 point
Field Font Color Black

Note: In this tutorial we are using the Tabular style
to create a grid of labels and field components.
After you have completed this tutorial, you should
try it again using the Vertical style as well as vari-
ous other combinations of the available layout set-
tings.

3 Click on the Data tab of the Data Tree and select
the Customer DataPipeline from the tree list at the
top. The Customer fields will be displayed in the
list at the bottom.

4 Click on the CustNo field and then hold down
the Ctrl key and click on the following fields in the
order specified:

Company
Contact
Phone
FAX

Note: This method of field selection is called the
Ctrl-click method.

5 Drag the selected fields onto the workspace,
positioning the mouse at the bottom left corner of
the header band. Release the mouse button. A grid
of labels will be created at the bottom of the header
band component and a corresponding grid of
DBText components will be created in the detail
band.

Note: The Data Tree has a built-in behavior for
creating labels and data-aware components. If the
components cannot fit in the band's vertical space
below the label, they are stacked at the end of the
band.

Note: The width assigned to each DBtext compo-
nent is calculated using the DisplayWidth of the
data pipeline's field components. When using the
DBPipeline, the field components are created auto-
matically and use the DisplayWidth information of
the fields in the dataset to which the pipeline is
connected. You can override this behavior by set-
ting the AutoCreateFields property to False and
using the DataPipeline's Fields Editor to set the
default DisplayWidth.

233Creating a Report Via the Data Tree

REPORT TUTORIALS
6 Close the Data Tree window.

Adjust the Layout
1 Scroll right until you can see the right edge of
the header band.

2 Click in the white space of the header band to
deselect the components.

3 Scroll back to the left, select the CustNo Label,
and then hold down the Shift key and click the cor-
responding DBText component directly below it.
This method of component selection is called the
Shift-click method.

4 Click on the Left Justify icon.

Note: The CustNo field is numeric; therefore, the
label and DBtext component were right justified
when created by the Data Tree.

5 Click on the white space of the header band, just
above the CustNo label. Hold down the mouse
button and move the mouse cursor down to about
the middle of the CustNo label and then move the
mouse to the right - across all of the labels and
shapes in the header band.

6 Release the mouse button to select the objects.

Note: A dotted box will be drawn on the work-
space as you move the mouse. When you release
the mouse button, all objects that cross the bound-
ary of the box will be selected. This method of
component selection is called the bounding box
method.

Note: If you cannot select all objects because you
need to scroll to the right, then select as many as
you can and release the mouse button. Now scroll
to the right. Hold down the Shift key and create
another bounding box by pressing the left mouse
button and dragging the mouse again. When you
release the mouse button, the selected objects will
be added to the list. If you reselect any existing
objects, they will be removed from the selection.

7 Display the Draw toolbar.

8 Click the arrow on the right side of the Fill

Color icon on the Draw toolbar to display the
drop-down Color Palette, then click on the light-
gray colored square. This will fill the shape com-
ponents with light gray.

9 Press the Ctrl key and use the down arrow key
to move the selection down until it is flush with the
bottom of the header band.

10 Place the mouse over the gray area entitled
'^ Detail' and click the right mouse button. Select
the Position... menu option. Set the height to
0.2292.

Note: The shapes in the detail band have their
ParentHeight property set to True, and thus adjust
automatically.

11 Select File | Save from the Delphi main menu.

12 Click the Preview tab in the Report Designer.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

234 Creating a Report Via the Data Tree

REPORT TUTORIALS
Add a TimeStamp
1 Return to the Design workspace.

2 Click the SystemVariable component icon
on the Report Designer component palette.

3 Click on the far left side of the footer band. A
System Variable component will be created.

4 Position the component at the top left corner of
the footer band.

5 Locate the drop-down list in the upper left cor-
ner of the Report Designer. It should contain a list
of variable types for the component.

6 Select the PrintDateTime item from this list.
The current date and time should be displayed in
the component.

7 Set the font:

Font Name Times New Roman
Font Size 10
Font Color Black
Font Style Regular

Note: The PrintDateTime variable type causes the
SystemVariable to display the date and time when
the report started printing. The same date and time
is printed on every page - it is essentially a time
stamp that can be used to track the moment the
report was printed.

Add Page Numbers
1 Scroll right until the edge of the footer band is
visible.

2 Click the SystemVariable component icon
on the Report Designer component palette.

3 Click on the far right side of the footer band. A
SystemVariable component will be created.

4 Use the drop-down list on the left side of the
Report Designer to select the PageSetDesc variable
type. Page 1 of 1 should be displayed in the com-
ponent.

5 Position the component at the top right corner of
the footer band.

6 Right-justify the component by clicking on the
right-justify icon on the Format toolbar.

7 Scroll to the left, hold down the Shift key, and
select the PrintDateTime System Variable.

8 Click the Align Top icon on the Align or
Space toolbar.

9 Click the Select Report icon , which appears
at upper left corner of the Report Designer where
the horizontal and vertical rulers meet. This will
select the report component in the Object Inspec-
tor.

10 Locate the PassSetting property of the Report in
the Object Inspector.

la
yo

ut
 c

he
ck

235Creating a Report Via the Data Tree

REPORT TUTORIALS
11 Make sure it is set to psTwoPass. This property
is set automatically when you select a SystemVari-
able type that requires a Page Count.

Note: Setting the report PassSetting on psTwoPass
will cause the report engine to generate all of the
pages automatically. One-pass reports only gener-
ate the first page, and then any pages requested
after that. This does not allow the report to calcu-
late the total number of pages. Two-pass reports
are required whenever you are using the Page-
Count in a System Variable.

12 Select File | Save from the Delphi main menu.

13 Click the Preview tab in the Report Designer.

Preview the Report at Run-time
1 Close the Report Designer window.

2 Select the Standard tab of the Delphi component
palette.

3 Add a Button component to the form.

4 Configure the Button component:

Name btnPreview
Caption Preview

5 Add the following code to the OnClick event
handler of the button:

rbCustomerList.Print;

6 Select File | Save from the Delphi main menu.

7 Run the Project.

8 Click on the Preview button. The DeviceType
property of the report component defaults to
Screen; thus, the report automatically displays the
Print Preview form when the Print method is
called. The Preview form should look like this:la

yo
ut

 c
he

ck

237Creating a Report Via the Report Wizard

REPORT TUTORIALS
Creating a Report Via the Report Wizard

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Delphi data access objects for use by
reports

• Use the Report Wizard to create report layouts

• Save and load report layouts to report

• template files (.rtm)

• Add code to preview and print the report at run-
time

Tabular Report

Vertical Report

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmViaReportWizard'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbViaWiz in the My
RB Tutorials directory (established on page 181).

Note: It is important to name the form and save the
form's unit using the names given above because
the report will be used in later tutorials.

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbRWProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

238 Creating a Report Via the Report Wizard

REPORT TUTORIALS
Create a Table, DataSource, and
DataPipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblCustomer
TableName customer.db
IndexFieldName Company

4 Select the Data Access tab of the Delphi Com-
ponent palette.

5 Add a DataSource component to the form.

6 Configure the DataSource component:

DataSet tblCustomer
Name dsCustomer

7 Select the RBuilder tab of the Delphi compo-
nent palette.

8 Add a DBPipeline component to the form.

9 Configure the DBPipeline component:

DataSource dsCustomer
Name plCustomer

Create a Report and Connect it to the
Data
1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plCustomer
Name rbCustomerList

Invoke the Report Designer and Access
the Report Wizard
1 Double-click on the Report component to dis-
play the Report Designer.

2 Select File | New from the Report Designer's
menu.

3 Double-click the Report Wizard icon (or click
the OK button while the icon is selected).

Use the Report Wizard to Lay Out a
Tabular Style Report
1 Click on the Data Pipeline Name drop-down list
and select the Customer table.

2 Click on the Company field in the Available
Fields list box and click the arrow button ‘>‘ to
move the field to the Selected Fields list box.

Note: You can also move a field to the Select
fields list box by double-clicking it.

3 Repeat this procedure to select the following
fields:

CustNo
Contact
Phone
FAX
City
State
Country

239Creating a Report Via the Report Wizard

REPORT TUTORIALS
4 Click the Next button to access the next page of
the Wizard.

5 This page of the Report Wizard is used to define
groups. No groups are required for this example;
therefore, click the Next button again.

6 Click the Landscape radio button located in the
Orientation group box.

7 Click the Next button.

8 Click on each of the style options in the list box
to preview each of the available styles.

9 Select the Corporate style and click the Next
button.

10 Click the Finish button. The report layout will
be generated and the Preview tab of the Report
Designer will be selected so that you can view the
report.

11 Click the Design tab.

12 Select the CustNo label and DBText compo-
nents and click the Left Justify icon.

Preview the Report
1 Click the Preview tab.

2 Click the Page Width and 100% buttons to view
the report on a larger scale.

3 Type 80 in the % edit box and press enter.

4 Type 120 in the edit box and press enter again.
The report can be scaled for viewing at any size up
to 250%.

5 Click the Page Width button to continue view-
ing the report.

6 Click the Next and Prior page buttons to navi-
gate through the pages of the report.

7 Click the Print button to access the print dialog.
From here you can print All, Current, or a specified
Range of pages. Click the Cancel button to close
the dialog.

8 Click the Design tab.

Set the Report to Two-Pass Mode
1 Select the System Variable component on the
far right of the footer band.

2 Use the drop-down list control in the far left cor-
ner of the Report Designer to change the variable
type from PageNoDesc to PageSetDesc.

3 Click the Select Report icon, which appears
at upper left corner of the Report Designer where
the horizontal and vertical rulers meet. This will
select the report object in the Object Inspector.

4 Locate the PassSetting property of the Report in
the Object Inspector.

240 Creating a Report Via the Report Wizard

REPORT TUTORIALS
5 Make sure it is set to psTwoPass. This property
is set automatically when you select a SystemVari-
able type that requires a Page Count.

Note: Setting the report PassSetting on psTwoPass
will cause the report engine to generate all of the
pages automatically. One-pass reports only gener-
ate the first page, and then any pages requested
after that. This does not allow the report to calcu-
late the total number of pages. Two-pass reports
are required whenever you are using the Page-
Count in a System Variable.

Save the Report Layout to a Template
File
1 Select File | Save As from the Report Designer's
menu.

2 Type CustTab in the File Name edit box and
click the Save button. Be sure to save the template
in the same directory as your project.

Note: By default, the report layout will be saved
with the form on which the TppReport component
resides. Saving the layout of a report to a template
file is optional. However, for this example we
want to create two report layouts for the same data.
The user can choose which layout to print at run-
time. Therefore, we will save the report layouts to
.rtm files and load the appropriate layout at run-
time.

Use the Report Wizard to Lay Out a Ver-
tical Style Report
1 Select File | New from the Report Designer's
menu.

2 Double-click the ReportWizard icon (or click
the OK button while the icon is selected).

3 Click on the Data Pipeline Name combo box
and select the Customer table.

4 Click on the Company row of the Available
Fields list box and click the arrow button '>' to
move the field to the Selected Fields list box.

5 Repeat this procedure to select the following
fields:

CustNo
Contact
Phone
FAX
City
State
Country

6 Click the Next button to access the next page of
the Wizard.

7 This page of the Report Wizard is used to define
groups. For this example no groups are required;
therefore, click the Next button again.

8 Click the Vertical radio button located in the
Layout group box.

9 Click the Next button.

10 Select the Soft Gray style and click the Next
button.

241Creating a Report Via the Report Wizard

REPORT TUTORIALS
11 Click the Finish button. The report layout will
be generated and the Preview tab of the Report
Designer will be selected so that you can view the
report layout.

12 Click the Design tab.

13 Select the CustNo label and DBText compo-
nents and click the Left Justify icon.

14 Select the System Variable component on far
right of the footer band.

15 Use the drop-down list control in the far left cor-
ner of the Report Designer to change the variable
type from PageNoDesc to PageSetDesc.

Modify the Report Layout to Contain
Columns
1 Select File | Page Setup from the Report
Designer main menu.

2 Select the Layout tab.

3 Click the Up Arrow button located to the right
of the Columns edit box. This should modify the
number of columns from 1 to 2.

4 Click the OK button.

5 Right-click over the line component at the top of
the detail band and set the ParentWidth property to
True.

Note: When using the Component popup menus, a
checkmark next to a menu option indicates the
property is set to True. Selecting the menu option
toggles the property from Checked to Unchecked
(i.e. True to False) and vice-versa.

6 Preview the report again. You should see two
columns.

Note: Quite often, you will want to use the Report
Wizard to layout a report and then customize the
report layout further using the Report Designer.

Save the Report Layout to a Template
File
1 Return to the design workspace.

2 Select File | Save As from the Report Designer
main menu.

3 Type CustVert in the File Name edit box and
click the Save button. Be sure to save the template
in the My RB Tutorials directory.

Note: You can use the File | Open menu to access
the file open dialog and load the CustTab.rtm and
CustVert.rtm files at design-time. To save any
changes, use the File | Save menu option.

la
yo

ut
 c

he
ck

242 Creating a Report Via the Report Wizard

REPORT TUTORIALS
Add the Run-Time Interface
Components
1 Close the Report Designer by selecting File |
Close from the Report Designer main menu.

Note: You can also close the Report Designer by
clicking the X button located on the upper right
corner of the Window Title bar or by double-click-

ing on the R icon located in the upper left cor-

ner of the Window Title bar.

2 Select the Standard tab of the Delphi component
palette.

3 Add a Group Box component to the form.

4 Configure the Group Box component:

Name gbReportStyle
Caption Report Style
Left 15
Top 11
Width 131
Height 82

5 Add two Radio Button components to the Group
Box:

Name rbTabular
Caption Tabular
Checked True
Left 18
Top 23
Width 65

Name rbVertical
Caption Vertical
Left 18
Top 50
Width 65

6 Add two Button components to the form.

7 Configure the Button components:

Name btnPreview
Caption Preview
Left 163
Top 28
Name btnPrint
Caption Print
Left 163
Top 56

243Creating a Report Via the Report Wizard

REPORT TUTORIALS
Code the Event Handlers
1 In the private section of the form unit, add the
following declaration:

private
FPathName: String;

2 Add an event handler for the Form OnCreate
event:

3 Add event handlers for each Button's OnClick
event:

Code Event handler for the Form OnCreate event

procedure TfrmViaReportWizard.FormCreate(Sender: TObject);
begin

{get the path name for this application}
FPathName := ExtractFilePath(ParamStr(0));

{set the initial report template file name}
rbCustomerList.Template.FileName := FPathName + 'CustTab.rtm';

end;

Code Event Handler for the Button’s OnClick event

procedure TfrmViaReportWizard.btnPreviewClick(Sender: TObject);
begin

{load the template file and print to screen}
rbCustomerList.Template.LoadFromFile;
rbCustomerList.DeviceType := dtScreen;
rbCustomerList.Print;

end;

procedure TfrmViaReportWizard.btnPrintClick(Sender: TObject);
begin

{load the template file and print to printer}
rbCustomerList.Template.LoadFromFile;
rbCustomerList.DeviceType := dtPrinter;
rbCustomerList.Print;

end;

244 Creating a Report Via the Report Wizard

REPORT TUTORIALS
4 Add event handlers for each Radio Button's
OnClick event as shown below.

5 Add ppTypes to the uses clause of your form's
unit.

Note: The ppTypes unit contains the declaration
for all enumerated types and constants used in
ReportBuilder. In this instance, it is needed to sup-
port the references to dtPrinter and dtScreen in the
preceding button click event handlers.

Compile and Run the Application
1 Select Project | Compile | rbRWProj. Fix any
compilation problems.

2 Select File | Save from the Delphi main menu.

3 Close the form and the unit.

4 Run the project.

5 Click the Preview button to view the tabular
style report.

6 Click the Vertical radio button.

7 Click the Preview button to view the vertical
style report.

Note: You can also send the report to the printer
by clicking the Print button.

.

Code Event handler for Radio Buttons’ OnClick

procedure TfrmViaReportWizard.rbTabularClick(Sender: TObject);
begin

{set template file name for the tabular report}
rbCustomerList.Template.FileName := FPathName + 'CustTab.rtm';

end;
procedure TfrmViaReportWizard.rbVerticalClick(Sender: TObject);
begin

{set template file name for the vertical report}
rbCustomerList.Template.FileName := FPathName + 'CustVert.rtm';

end;

245Creating a Report Via the Report Wizard

REPORT TUTORIALS
The reports should appear as pictured below:

Tabular Report

Vertical Report

247A Simple Report the Hard Way

REPORT TUTORIALS
A Simple Report the Hard Way

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Delphi data access objects for use by
reports

• Work with the Report Designer

• Create and configure the most common report
components

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmCustomerList'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbCust in the My RB
Tutorials directory (established on page 181).

Note: It is important to name the form and save the
form's unit using the names given above because
the report will be used in later tutorials.

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbCSProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

248 A Simple Report the Hard Way

REPORT TUTORIALS
Create a Table, DataSource, and
DataPipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblCustomer
TableName customer.db

4 Add a DataSource component to the form.

5 Configure the DataSource component:

DataSet tblCustomer
Name dsCustomer

6 Select the RBuilder tab of the Delphi compo-
nent palette.

7 Add a DBPipeline component to the form.

8 Configure the DBPipeline component:

DataSource dsCustomer
Name plCustomer

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plCustomer
Name rbCustomerList

Invoke the Report Designer and Set the
Paper Orientation
1 Double-click on the Report component to dis-
play the Report Designer.

2 Size and move the Report Designer window so
that the Object Inspector is visible.

3 Select the File | Page Setup option from the
Report Designer main menu.

4 Click the Paper Size tab and change the paper
orientation from Portrait to Landscape, then click
the OK button.

Lay Out the Customer List Title Label in
the Header Band
1 Right-click over the white space of the header
band and access the Position... dialog.

2 Set the height to 0.9167 and click the OK but-
ton. The header band should expand in height.

Note: You can also change the height of the header
band by dragging the divider that appears below
the white space of the header band. This method is
quick and easy, but not as precise.

3 Click the Label component icon on the
Report Designer component palette.

4 Click on the left side of the header band. A
label will be created in the header band. It will
become the current selection in the Object Inspec-
tor.

5 Locate the Edit box at the upper left corner of
the Report Designer.

249A Simple Report the Hard Way

REPORT TUTORIALS
6 Select the text inside it and replace it with Cus-
tomer List.

7 Locate the font controls on the Format bar.

Note: The font controls appear to the right of the
Edit box and provide the following functions:

• Font Name drop-down list
• Font Size drop-down list
• Bold
• Italic
• Underline Font Style
• Text Alignment
• Font color
• Highlight color

8 Set the font:

Font Name Times New Roman
Font Size 12
Font Style Bold & Italic

9 Locate the horizontal ruler. It is above the
header band.

10 Position the mouse over the ruler and right-
click.

11 Select the Millimeters option from the speed
menu.

12 Right-click over the label and select the Posi-
tion... menu option.

13 Enter the following values into the Position dia-
log:

Left 2.381
Top 1.323
Width 24.871
Height 5.027

14 Click the OK button. The label should move to
the upper left corner of the header band.

Note: You can also change the position of a com-
ponent by dragging it. The exact position of the
component will be displayed in the status bar at the
bottom of the Report Designer after it is dropped.
You can use any unit of measure (inches, screen
pixels, millimeters, etc.) you prefer.

Lay Out the Company Title Label in the
Header Band
1 Place another label near the center of the header
band.

2 Configure the label:

Caption Marine Adventures &
Sunken Treasures Co.

Font Name Times New Roman
Font Size 16
Font Style Bold & Italic

3 Click the font color drop-down icon and
select dark blue.

4 Select View | Toolbars from the Report
Designer main menu. A list of toolbar names
should be displayed. Select the Align or Space
toolbar.

5 Click on the label component that you just cre-
ated in the header band.

la
yo

ut
 c

he
ck

250 A Simple Report the Hard Way

REPORT TUTORIALS
6 Click the Center Horizontally icon on the
Align or Space toolbar. This should cause the label
to be centered in the header band.

7 Click on the Customer List label.

8 Hold down the Shift key and click the Report
Title label.

9 Click the Align Top icon of the Align or
Space toolbar. The title labels should now be
aligned.

Create Labels for the Header Band
1 Place six labels in the header band and position
them from left to right. Set the label captions as
follows:

Company
Contact
Phone
Address
City
State

2 Click on the Company label.

3 Hold down the Shift key and click on the Con-
tact label.

4 Repeat this procedure until all six labels are
selected.

5 Set the font:

Font Name Times New Roman
Font Size 12
Font Style Bold
Font Color Black

6 Leave these labels at their current positions; we
will align them later.

Complete the Header Band Layout
1 Click the Line component icon on the
Report Designer component palette.

2 Click in the header band. A line component will
be created.

3 Right-click over the line and select the Parent-
Width menu option. The line will resize to the
width of the header band.

4 Select the View | Toolbars menu option from
the Report Designer main menu and make the
Draw toolbar visible.

5 Drag the Draw toolbar to the left side of the
Report Designer and dock it below the Align or
Space toolbar.

6 Click the Line Thickness icon on the Draw
toolbar and select the 1 pt thickness. The line
thickness should adjust accordingly.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

251A Simple Report the Hard Way

REPORT TUTORIALS
7 Hold down the Ctrl key and press the down
arrow key until the line is positioned at the bottom
of the header band.

Lay Out the Detail Band
1 Click the DBText component icon on the
Report Designer component palette.

2 Click in the detail band. A DBText component
will be created.

3 Locate the two drop-down lists at the upper left
corner of the Report Designer. The list on the left
contains the data pipelines. It should default to the
Customer data pipeline, since this is the data pipe-
line for the report. The list on the right contains a
list of fields for the currently selected data pipeline.

4 Select the Company field from the field list. A
company name should be displayed in the DBText
component.

5 Set the DBText component's font:

Font Name Times New Roman
Font Size 10
Font Style Regular
Font Color Black

6 Place five more DBText components in the
detail band. Assign them to the following fields:

Contact
Phone
Addr1
City
State

7 Right-click over the horizontal ruler and change
the unit of measure to Screen Pixels.

8 Right-click over the DBText component
assigned to the Company field and access the Posi-
tion... dialog. Set the position values:

Left 2
Top 4

9 Access the Position... dialog of each remaining
DBText component and set the left position to the
following values:

Contact 219
Phone 378
Address 519
City 739
State 896

10 Select the Company DBText component, then
Shift-click to select the remaining DBText compo-
nents.

11 Click on the Align Top icon of the Align or
Space toolbar. The components should align with
Company DBText component.

12 Right-click over each of the components and set
Autosize to True.

la
yo

ut
 c

he
ck

252 A Simple Report the Hard Way

REPORT TUTORIALS
13 Right-click over the white space of the detail
band and access the Position... dialog.

14 Set the height to 25. The detail band should
shrink in height.

Align the Header Band Labels Vertically
1 Select the Company label and right-click over it
to access the Position... dialog.

2 Set the Top position to 65.

3 Hold down the Shift key and select the remain-
ing label components in the header band:

Contact
Phone
Address
City
State

4 Click the Align Top icon on the Align or Space
toolbar. The labels should align with the top of the
Company label.

Align the Header Band Labels with the
Detail Band DBText Components
1 Select the Company DBText component in the
detail band.

2 Hold down the Shift key and click on the Com-
pany label component in the header band.

3 Click the Align Left icon on the Align or
Space toolbar. The label and DBText component
should now be aligned.

4 Repeat this procedure for the remaining DBText
components and corresponding Label compo-
nents. Make sure to select the DBText component
first. The first component selected determines the
position used for alignment.

Set PrintDateTime
1 Right-click over the white space of the footer
band and access the Position... dialog.

2 Set the height to 40. The footer band should
shrink in height.

3 Click the SystemVariable component icon
on the Report Designer component palette.

4 Click on the far left side of the footer band. A
System Variable component will be created.

5 Locate the drop-down list on the left-hand side
of the Report Designer. It should contain a list of
variable types for the component.

la
yo

ut
 c

he
ck

253A Simple Report the Hard Way

REPORT TUTORIALS
6 Select the PrintDateTime item from this list.
The current date and time will be displayed in the
component.

7 Set the font:

Font Name Times New Roman
Font Size 10
Font Style Regular
Font Color Black

8 Right-click over the SystemVariable component
and access the Position... dialog.

9 Set the position values:

Left 9
Top 22

Set Page Numbers
1 Locate the horizontal scroll bar at the bottom of
the Report Designer.

2 Scroll right until the right edge of the footer
band is visible.

3 Click the SystemVariable component icon on
the Report Designer component palette.

4 Click on the far right side of the footer band. A
SystemVariable component should be created.

5 Use the drop-down list on the left-hand side of
the Report Designer to select the PageSetDesc
variable type. Page 1 of 1 should be displayed in
the component.

6 Right-click over the component and access the
Position... dialog.

7 Set the position values:

Left 943
Top 22

8 Right-justify the component by clicking on the
Right Justify icon on the Format toolbar.

9 Select File | Save from the Delphi main menu.

10 Click the Preview tab in the Report Designer. A
three page report should appear.

Preview the Report at Run-Time
1 Close the Report Designer.

2 Select the Standard tab of the Delphi component
palette.

3 Add a Button component to the form.

4 Configure the Button component:

Name btnPreview
Caption Preview

la
yo

ut
 c

he
ck

254 A Simple Report the Hard Way

REPORT TUTORIALS
5 Add the following code to the OnClick event
handler of the button:

rbCustomerList.Print;

6 Select File | Save from the Delphi main menu.

7 Run the Project.

8 Click on the Preview button. The report will be
displayed in the Print Preview form:

255Groups, Calculations, and the Summary Band

REPORT TUTORIALS
Groups, Calculations, and the Summary Band

Overview
This tutorial will show you how to do the follow-
ing:

• Divide a report into sections using groups

• Perform calculations within a report

• Utilize a summary band

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmStockSummary'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbStock in the My
RB Tutorials directory (established on page 229).

Note: It is important to name the form and save the
form's unit using the names given above because
the report will be used in later tutorials.

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbSTProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

256 Groups, Calculations, and the Summary Band

REPORT TUTORIALS
Create a Query, DataSource, and
DataPipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Query component to the form.

3 Configure the Query component:

DatabaseName DBDEMOS
SQL SELECT *

FROM master
 ORDER BY rcmndation
Name qryStock

4 Double-click on the Active property in the
Object Inspector to set it to true.

5 Add a DataSource component to the form.

6 Configure the DataSource component:

DataSet qryStock
Name dsStock

7 Select the RBuilder tab of the Delphi compo-
nent palette.

8 Add a DBPipeline component to the form.

9 Configure the DBPipeline component:

DataSource dsStock
Name plStock

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plStock
Name rbStock

Invoke the Report Designer
1 Double-click on the Report component to dis-
play the Report Designer.

2 Size and move the Report Designer window so
that the Object Inspector is visible.

3 Set the paper orientation to Landscape (File |
Page Setup | Paper Size).

4 Drag the header band to the one inch mark on
the vertical ruler. Right-click over the white space
of the header band and access the Position dialog.
The value for the height should be 1.

Create Labels in the Header Band
1 Place a label in the left side of the header band.

2 Set the caption to Gekko Investments.

3 Set the font and position:

Font Name Times New Roman
Font Size 20
Font Style Bold & Italic
Left 0.0417
Top 0.0417

4 Select the label.

5 Copy the label.

6 Paste the label into the header band.

7 Set the caption of this label to Stock Portfolio
Analysis.

257Groups, Calculations, and the Summary Band

REPORT TUTORIALS
8 Set the font and position:

Font Name Times New Roman
Font Size 12
Font Style Bold & Italic
Left 0.0417
Top 0.4063

Create a Group on the 'rcmndation'
Field
1 Select Report | Groups from the main menu.
The Groups dialog will be displayed.

2 The drop-down list at the top of the dialog con-
tains a list of fields from the Query. Select the
plStock.RCMNDATION field and click the Add
button. A new entry entitled Group1:
plStock.RCMNDATION should be added to the
list.

3 Locate the Start New Page check box near the
middle of the dialog.

4 Check this box. This will cause the report to
start a new page each time the RCMNDATION
field changes value.

Note: Because groups are based on a change in
field value, the field on which a group is based
should always be used to order the records. You
may remember that the query for this report is
ordered by the 'rcmndation' field. You must
always order the records by the fields you intend to
use for groups because ReportBuilder will not sort
records for you.

5 Click the OK button. You should see two new
bands: one above and one below the detail band.
These bands have no height; thus, no white space
appears above the dividers.

6 Right-click over the group header band divider
and select the Position... menu option.

7 Set the height to 0.6458.

Lay Out the Group Header Band
1 Place a label in the left side of the group header
band.

2 In the Object Inspector, set the Name of the
component to rlRecommendation.

3 Set the font and position:

Font Name Times New Roman
Font Size 14
Font Style Bold

Left 0.0417
Top 0.0937

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

258 Groups, Calculations, and the Summary Band

REPORT TUTORIALS
4 Place a line component near the bottom of the
group header band.

5 Right-click over the line component and select
the ParentWidth option.

6 Locate the Line type drop-down list at the upper
left corner of the Report Designer.

7 Select 'Bottom' from this list. This causes the
line to be drawn at the bottom of the rectangular
bounding shape.

8 Click on the Line thickness icon on the

Draw toolbar and select 1 1/2 point.

9 Select the line and use the arrow keys to posi-
tion it so that it's flush with the bottom of the group
header band.

Code the BeforeGenerate Event of the
Group Header Band
1 Click in the white space of the group header
band. The band should be selected in the Object
Inspector.

2 Click on the Events tab of the Object Inspector
and double-click on the BeforeGenerate event.
Add the code shown below to the event handler.

Note: This routine retrieves the value of the rec-
ommendation field into a local string variable. It
then assigns a color based on the value of the field.
The color is stored in a private variable of the form
so that all of the report event handlers can use it.
The recommendation label in the group header
band is set to the color. Finally, the recommenda-
tion label caption is set using the FirstPage prop-
erty of the group. If FirstPage is False, then the
group has overflowed onto an additional page.

la
yo

ut
 c

he
ck

Code Event handler for the BeforeGenerate Event

procedure TfrmStockSummary.ppGroupHeaderBand1BeforeGenerate(Sender: TObject);
var

lsRecommendation: String;
begin

lsRecommendation := plStock['Rcmndation'];

{determine the font color based on the value of Recommendation}
if (lsRecommendation = 'BUY') then
FRecommendationColor := clGreen

else if (lsRecommendation = 'HOLD') then
FRecommendationColor := clOlive

else if (lsRecommendation = 'SELL') then
FRecommendationColor := clMaroon;

rlRecommendation.Font.Color := FRecommendationColor;

{check whether first page of group or a continuation}
if rbStock.Groups[0].FirstPage then
rlRecommendation.Caption := 'Recommended ' + lsRecommendation + ' List'

else
rlRecommendation.Caption := 'Recommended ' + lsRecommendation + '''s continued...';

end;

259Groups, Calculations, and the Summary Band

REPORT TUTORIALS
3 Scroll up in the Code Editor and add the follow-
ing code to the 'private' section of the form class
declaration:

FRecommendationColor: TColor;

4 Select View | Toggle Form/Unit from the Del-
phi main menu.

5 Select the Standard tab of the Delphi Compo-
nent palette.

6 Create a button on the form.

7 Configure the button:

Name btnPreview
Caption Preview

8 Add the following code to the OnClick event for
the button:

rbStock.Print;

9 Select File | Save from the Delphi main menu.

10 Run the project. The report should look like
this:

Add General Data to the Detail Band
1 Access the Report Designer.

2 Right-click over the white space of the detail
band and select the Position... menu option.

3 Set the height to 1.8542.

4 Select View | Toolbars | Data Tree. The Data
Tree window should appear. Position it over the
Object Inspector.

5 Click the Layout tab at the bottom of the Data
Tree and configure the drag-and-drop settings:

Create All
Style Tabular

Label Grid False
Label Font Name Times New
Label Font Style Regular
Label Font Size 10 point
Label Font Color Black

Field Grid False
Field Font Name Times New
Field Font Style Bold
Field Font Size 10 point
Field Font Color Black

6 Click on the Data tab and use the Ctrl-click
method to select these fields in order:

EXCHANGE
INDUSTRY
PROJ_GRTH
OUTLOOK

260 Groups, Calculations, and the Summary Band

REPORT TUTORIALS
7 Drag the selected fields into the detail band.
Four DBText components and four associated
labels will be created.

8 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 1.0729
Top 0.3542

Note: As you move the selection, the position
appears on the status bar. Use these measurements
to determine when you have reached the position.

9 Place a line above the selection.

10 Configure the line component:

Line Type Top
Thickness 1 1/2 pt
Left Position 1.0729
Top 0.2083
Width 4.2604

11 Place a label component over the line.

12 Configure the label component:

Caption General
Font Name Times New Roman
Font Size 10
Font Style Bold & Italic
Text Alignment Centered
Top Position 0.1354
Transparent False

13 Select the line, then Shift-click the label. Click

the Align Middle icon on the Align or Space
toolbar.

Add the Vital Stats Data to the Detail
Band
1 Use the Ctrl-click method to select these fields
in order from the Data Tree:

P_E_RATIO
RANK
RATING
BETA

2 Drag the selected fields directly below the Gen-
eral components. Four DBText components and
four associated labels will be created.

3 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 1.0729
Top 1.1875

4 Select the line and General label.

5 Copy and paste the selection. A new line and
label should appear just below the originals.

6 Position these two components above the
newly-created components.

la
yo

ut
 c

he
ck

261Groups, Calculations, and the Summary Band

REPORT TUTORIALS
7 Set the line top to 1.0417.

8 Set the label top to 0.9687.

9 Right-click over the label and select the Bring to
Front menu item.

10 Set the label caption to Vital Stats.

11 Select the PE RATIO label, then Shift-click the
line.

12 Click the Align Left icon of the Align or
Space toolbar.

13 Select the line, then Shift-click the Vital Stats
label.

14 Click on the Align Middle icon of the Align
or Space toolbar.

Add the Pricing Data to the Detail Band
1 Use the Ctrl-click method to select these fields
in order from the Data Tree:

CUR_PRICE
YRL_HIGH
YRL_LOW
PRICE_CHG

2 Drag the selected fields to the immediate right
of the General components. Four DBText compo-
nents and four associated labels will be created.

3 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 5.7188
Top 0.3542

4 Right-click over each of the four DBText com-
ponents and set the DisplayFormat to
$#,0.00;($#,0.00) (the first selection with a dollar
sign).

5 Select the line and General label.

6 Copy and paste the selection.

7 Position the selection above the newly-created
components.

8 Set the label caption to Pric-
ing.

Align the Pricing Data Components
1 Select the CUR_PRICE label and then the line
component.

2 Click on the Align Left icon of the Align or
Space toolbar.

3 Set the width of the line to 4.4479.

4 Select the General label and then the Pricing
label.

5 Click on the Align Top icon of the Align or
Space toolbar.

la
yo

ut
 c

he
ck

k

262 Groups, Calculations, and the Summary Band

REPORT TUTORIALS
6 Select the line behind the General label, then the
line behind the Pricing label.

7 Click the Align Top icon.

8 Select the Pricing line and then the Pricing
label.

9 Click on the Align Middle icon of the Align
or Space toolbar. The label should be centered
horizontally in relation to the line.

Add the Recommendation Data to the
Detail Band
1 Use the Ctrl-click method to select these fields
in order from the Data Tree:

RCMNDATION
RISK
SAFETY

2 Drag the selected fields immediately below the
Pricing components.

3 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 5.7188
Top 1.1875

4 Close the Data Tree window.

5 Click in the white space of the band to deselect
the components, then select the DBText compo-
nent for the RCMNDATION field.

6 Set the name of this component to dbtRecom-
mendation in the Object Inspector. We will use
this name in an event handler.

7 Select the Pricing line and label.

8 Copy and paste the selection.

9 Position the selection above the newly-created
components.

10 Set the label caption to Recommendation.

Align the Recommendation Data
Components
1 Select the RCMNDATION label and then the
line component.

2 Click on the Align Left icon of the Align or
Space toolbar.

3 Select the Vital Stats label and then the Recom-
mendation label.

4 Click on the Align Top icon of the Align or
Space toolbar.

5 Select the line behind the Vital Stats label, then
the line behind the Recommendation label.

he
ck

la
yo

ut
 c

he
ck

263Groups, Calculations, and the Summary Band

REPORT TUTORIALS
6 Click the Align Top icon of the Align or
Space toolbar.

7 Select the Recommendation line and label.

8 Click on the Align Middle icon of the Align
or Space toolbar. The label should be centered
horizontally in relation to the line.

Add the Stock Symbol and Company
Data to the Detail Band
1 Place a DBText component in the upper left cor-
ner of the detail band

2 Configure the DBText component:

DataField SYMBOL
AutoSize True
Name dbtSymbol

Font Name Times New Roman
Font Size 14
Font Style Italic

Text Alignment Left justified
Left 0.0937
Top 0.0104

3 Place another DBText component in the upper
left corner of the detail band.

4 Configure the DBText component:

DataField CO_NAME
Name dbtCompany
Font Name Times New Roman
Font Size 8
Font Style Regular
Left 0
Top 0.4167
Width 1

Assign the BeforeGenerate Event Han-
dler of the Detail Band

1 Click in the white space of the detail band.

2 Click on the Events tab of the Object Inspector.

3 Double-click on the BeforeGenerate event. An
event handler shell will be generated in your Del-
phi form.

4 Add the code as shown below.

la
yo

ut
 c

he
ck

Code Set the Font Color
{set the font color of Symbol and Recommendation}
dbtRecommendation.Font.Color := FRecommendationColor;
dbtSymbol.Font.Color := FRecommendationColor;

264 Groups, Calculations, and the Summary Band

REPORT TUTORIALS
Note: This routine sets the color of the stock sym-
bol and the recommendation field to the color as
defined in the BeforeGenerate event of the group
header band.

5 Select File | Save from the Delphi main menu.

6 Select Project | Compile rbSTProj from the Del-
phi main menu. Fix any problems.

7 Run the project.

8 Preview the report. Click on the Last Page icon
of the Print Preview window. A thirty-seven page
report should appear. The label in the group
header should change color based on the group.
The stock symbol and recommendation fields
should also be color-coded.

Lay Out the Footer Band
1 Access the Report Designer.

2 Place a System Variable component on left side
of the footer band.

3 Configure the SystemVariable component:

VarType PrintDateTime
Text Alignment Left justified
Font Name Times New Roman
Font Size 10
Font Style Regular
Font Color Black
Left 0
Top 0.2292

4 Scroll to the right until you see the edge of the
footer band.

5 Create a SystemVariable component on the
right side of the footer band.

6 Configure the SystemVariable component:

VarType PageSetDesc
Text Alignment Right justified
Font Name Times New Roman
Font Size 10
Font Style Regular
Font Color Black
Left 9.75
Top 0.2292

7 Select File | Save from the Delphi main menu.

8 Preview the report by running the application.

la
yo

ut
 c

he
ck

PrintDateTime

la
yo

ut
 c

he
ck

PageSetDesc

265Groups, Calculations, and the Summary Band

REPORT TUTORIALS
Lay Out the Summary Band
1 Return to the Report Designer.

2 Select Report | Summary from the Report
Designer main menu. A summary band should
appear as the bottommost band in the Report
Designer.

3 Right-click over the white space of the summary
band and select the Position... menu option.

4 Set the height to 3.4063.

5 Scroll down so that you can see the entire sum-
mary band.

6 Place a label component on the left side of the
summary band.

7 Configure the label component:

Caption Summary Page
Font Name Times New Roman
Font Size 16
Font Style Bold
Font Color Black
Text Alignment Left justified
Left 0
Top 0.0313

8 Right-click over the white space of the summary
band and select the NewPage menu option. This
will cause the summary band to print on a new
page at the end of the report.

9 Place a label component near the center of the
summary band.

10 Configure the label component:

Caption Recommendations
Font Name Times New Roman
Font Size 16
Font Style Regular
Font Color Black
Text Alignment Left justified
Left Position 1.625
Top 0.6667

11 Place three more label components in the sum-
mary band.

12 Set the captions:

Buy
Hold
Sell

la
yo

ut
 c

he
ck

266 Groups, Calculations, and the Summary Band

REPORT TUTORIALS
Adjust the Summary Band Labels
1 Place the Buy label at the following position:

Left 2.8750
Top 1.0208

2 Place the Sell label at the following position:

Top 2.0104

3 Select the Buy, Hold, and Sell labels in that
order.

4 Click the Align Right icon on the Align or
Space toolbar.

5 Click the Space Vertically icon on the Align
or Space toolbar.

6 Click the Right Justify icon on the Format tool-
bar.

7 Place a label component near the bottom of the
summary band.

8 Configure the label component:

Caption Total Number of
Stocks Analyzed

Font Name Times New Roman
Font Size 16
Font Style Regular
Top Position 2.4896

9 Click on the Sell label, then Shift-click the new
label.

10 Click the Align Right icon on the Align or
Space toolbar.

Create and Adjust Variable Components
1 Place three Variable components to the right of
the Buy, Hold, and Sell labels.

2 Set the names to vrBuyTotal, vrHoldTotal, and
vrSellTotal in the Object Inspector.

3 Use the drop-down list in the Edit toolbar to set
the DataType of each of the variables to Integer.

4 Select the vrBuyTotal variable and set the posi-
tion:

Left 3.5521

5 Shift-click the vrHoldTotal and vrSellTotal
variable components.

6 Click on the Align Right icon on the Align
or Space toolbar.

la
yo

ut
 c

he
ck

267Groups, Calculations, and the Summary Band

REPORT TUTORIALS
7 Click the Right Justify icon on the Format tool-
bar.

8 Select the Buy label, then Shift-click the vrBuy-
Total variable.

9 Click the Align Top icon of the Align or
Space toolbar. Align the Hold and Sell variables
with the corresponding labels.

10 Select the Buy label and variable and set the
font color to green.

11 Select the Hold label and variable and set the
font color to olive.

12 Select the Sell label and variable and set the font
color to maroon.

13 Select File | Save from the Delphi main menu.

Assign Event Handlers to the OnCalc
Events of the Variable Components
1 Select the vrBuyTotal variable.

2 Click on the Events tab of the Object Inspector.

3 Double-click on the OnCalc event. An event
handler shell will be generated in your Delphi
form.

4 Assign the following code to this event handler:

if(qryStock.FieldByName('Rcmndation').AsString
 = 'BUY') then
Value := Value + 1;

5 Assign the following code to the OnCalc event
of the vrHoldTotal variable:

if(qryStock.FieldByName('Rcmndation').AsString
 = 'HOLD') then
Value := Value + 1;

6 Assign the following code to the OnCalc event
of the vrSellTotal variable:

if(qryStock.FieldByName('Rcmndation').AsString
 = 'SELL') then
Value := Value + 1;

Note: All three of these event handlers check the
field value to make sure it corresponds to the total
and then increment the total. The OnCalc event is
a procedure where the Value parameter contains
the current value of the variable. These particular
variables are integers because we set the DataType
to Integer when we created them.

7 Select File | Save from the Delphi main menu.

la
yo

ut
 c

he
ck

268 Groups, Calculations, and the Summary Band

REPORT TUTORIALS
8 Select Project | Compile rbSTProj from the Del-
phi main menu. Fix any problems.

9 Run the project.

10 Preview the report. Click on the Last Page icon
of the Print Preview window. A thirty-eight page
report should appear. The summary band should
contain totals for each recommendation type.

Note: You must compile and run this report in
order to see exactly what it will look like. This is
because event handlers have been assigned to the
report. When event handlers are assigned, the
report must be compiled and run; otherwise, the
event handler code will not be used when generat-
ing the report and any changes made via the event
handlers will not be reflected in the report.

Create the Grand Total
1 Return to the Report Designer.

2 Place a DBCalc component at the bottom of
the summary band.

3 Right-click over the component and access the
Calculations... menu option.

4 Select the Count function from the Calc Type
drop-down list and click the OK button.

5 Configure the component:

Font Name Times New Roman
Font Size 16
Font Style Bold
Font Color Black
Text Alignment Right justified
Width 1.0729

6 Click on the vrSellTotal variable, then Shift-
click the DBCalc component.

7 Click on the Align Right icon of the Align
or Space toolbar.

8 Select the Total... label, then the DBCalc com-
ponent.

9 Click on the Align Top icon of the Align or
Space toolbar.

10 Place a line component at the bottom of the
summary band.

11 Right-click over the line component and select
the Double menu option. The line should now
appear as two parallel lines.

12 Set the top of the line to 2.3437.

13 Select the DBCalc component, then Shift-click
the line.

14 Select the View | Toolbars | Size menu option
from the Report Designer main menu.

15 Dock the Size toolbar on the lower left side of
the Report Designer.

16 Click on the Grow Width to Largest icon of
the Size toolbar. The line should now be the same
width as the DBCalc.

17 Click the Align Right icon on the Align or
Space toolbar.

269Groups, Calculations, and the Summary Band

REPORT TUTORIALS
18 Select File | Save from the Delphi main menu.

Preview at Run-Time
1 Select Project | Compile rbSTProj. Fix any
compilation problems.

2 Select File | Save from the Delphi main menu.

3 Run the project.

4 Preview the report. Click on the Last Page

icon of the Print Preview window. A grand

total should appear at the bottom. The first page
and last pages of the report should look like this:

la
yo

ut
 c

he
ck

First Page

Last Page

271Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
Using Regions to Logically Group Dynamic Components

Overview
This tutorial will show you how to do the follow-
ing:

• Use regions

• Use a stretching memo

• Position components in relation to a stretching
memo

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmRegions'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbRegion in the My
RB Tutorials directory (established on page 181).

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbRGProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

272 Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
Create a Table, DataSource, and
DataPipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblBiolife
TableName biolife.db

4 Select the Table component and then double-
click on the Active property in the Object Inspector
to set it to true.

5 Add a DataSource component to the form.

6 Configure the DataSource component:

DataSet tblBiolife
Name dsBiolife

7 Select the RBuilder tab of the Delphi compo-
nent palette.

8 Add a DBPipeline component to the form.

9 Configure the DBPipeline component:

DataSource dsBiolife
Name plBiolife

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plBiolife
Name rbRegions

Invoke the Report Designer
1 Double-click on the Report component to dis-
play the Report Designer.

2 Size and move the Report Designer window so
that the Object Inspector is visible.

3 Set the paper orientation to Landscape (File |
Page Setup | Paper Size).

4 Click the Layout tab of the Page Setup dialog
and set the Columns to 2.

5 Click the OK button to close the dialog.

Configure the Header and Footer
Bands
1 Set the height of the header and footer bands to
0.3.

2 Scroll to the right in the Report Designer until
you can see the right edge of the bands.

3 Place a SystemVariable component on the right
side of the footer band.

4 Locate the drop-down list at the upper left cor-
ner of the Report Designer.

5 Select the PrintDateTime option from the drop-
down list.

273Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
6 Configure the component:

Font Name Arial
Font Size 12
Font Style Regular
Font Color Black

Left 8.7188
Top 0.0833
Text Alignment Right justified

Create a Group on the 'Category' Field
1 Select Report | Groups from the main menu.

2 Select the 'plBiolife.Category' field from the
drop-down list at the top of the dialog.

3 Click the Add button. A new group will be
added to the list.

4 Click the Start New Column checkbox in the
'On Group Change' section of the dialog.

5 This option forces a new column each time the
group changes, which allows each of the records
from the Biolife table to appear in a separate col-
umn.

6 Click OK to close the Groups dialog.

7 Scroll to the left.

Note: You may notice that the group header and
group footer bands created for the Category group
are the same width as the column header, column
footer, and detail bands. This is due to the fact that
group bands print before and after the detail band.
In order to print before and after the detail band,
the group bands must be the same width as the
detail band.

Create an Image Region
1 Set the height of the detail band to 3.5104.

2 Place a region component (from the
Advanced toolbar) at the top of the detail band.

Note: A region is a special type of component that
can contain other components. The region has the
same printing behavior as a rectangular shape in
that it can print a colored rectangle with a one pixel
border. The gray shaded area you see around the
edge of the region is not printed, but is provided so
that you can distinguish a region from a shape
component.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

274 Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
3 Configure the region:

Name rgImage
Left 0
Top 0
Width 4
Height 1.8021

4 Select the View | Toolbars | Data Tree.

5 Position the Data Tree window to the left of the
Report Designer (in front of the Object Inspector).

6 Click on the Layout tab of the Data Tree and
click the Fields radio button.

7 Click on the Data tab.

8 Select the Common_Name and Graphic fields.

9 Drag the selection into the white space of the
Region. If the Image component is created outside
of the region, drag it into the region below the
DBText component.

10 Click in the white space of the Region to dese-
lect the components.

Adjust Image Region Components
1 Configure the DBText component:

AutoSize True
Font Name Arial
Font Size 20
Font Style Bold
Font Color Black

Left 0.8229
Top 0.0208

2 Configure the DBImage component:

Left 1.125
Top 0.3854
Width 1.7604
Height 1.0313
MaintainAspectRatio True

3 Select File | Save from the Delphi main menu.

la
yo

ut
 c

he
ck

275Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
Create a Memo Region
1 Place a region immediately below the image
region.

2 Configure the region:

Name rgMemo
Left 0
Top 1.8021
Width 4
Height 0.4687

Note: Notice that the region has a one pixel- wide
black border. You can turn this border off by set-
ting the Line Color to 'No Line' in the Report
Designer or by setting the Pen.Style to psClear in
the Object Inspector.

3 Select the Notes field in the Data Tree field list.

4 Drag the Notes field from the Data Tree into the
white space of the memo region.

5 Configure the DBMemo component:

Name dbmNotes
Stretch True

Font Name Arial
Font Size 10
Font Style Bold
Font Color Red

Left 0.0625
Top 1.8541
Width 3.8854
Height 0.2292
Bottom Offset 0.0208

6 Select File | Save from the Delphi main menu.

Note: By setting the Stretch property to True, we
are telling the Memo to expand or contract based
on the amount of text in the Notes field. The text
will be wrapped within the width of the compo-
nent. The Bottom Offset property determines the
amount of white space that will appear below the
memo after it has completed printing.

Create a Fields Region
1 Place a region in the space immediately below
the memo region.

2 Configure the region:

Name rgFields
Left 0
Top 2.2708
Width 4
Height 1.2396

3 Click on the Layout tab of the Data Tree.

la
yo

ut
 c

he
ck

276 Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
4 Configure the Layout settings:

Create All
Style Vertical
Label Font Name Arial
Label Font Style Bold
Label Font Size 10
Label Font Color Black
Field Font Name Arial
Field Font Style Regular
Field Font Size 10
Field Font Color Black

5 Click on the Data tab to return to the field list.

6 Select the following fields and then drag the
selection into the fields region:

Category
Common_Name
Species Name
Length_In

7 Hold down the Ctrl key and use the arrow key to
position the selection:

Left 0.1771
Top 2.4166

8 Close the Data Tree.

Adjust the DBText Components
1 Right-click over the 'Length_In' DBText com-
ponent and set the DisplayFormat to
#,0;-#,0 (the first DisplayFormat in the list).

2 Select all of the components in this region.

3 Set the AutoSize property to True in the Object
Inspector.

4 Right-click over the white space of the Region
and select the ShiftRelativeTo... menu option.

5 Select the rgMemo region from the drop-down
list and then click the OK button.

Note: We set the Stretch property of the DBMemo
component to True. That means that each time the
memo prints, the height will expand or contract
based on the amount of text in the Notes field.
Because the memo is contained within a region,
that region will also stretch to accommodate the
memo. When that happens, we want to position the
fields containing the DBText components immedi-
ately below the Memo region. We do this by set-
ting the ShiftRelativeTo property of the Fields
region to the Memo region.

6 Select File | Save from the Delphi main menu.

7 Close the Report Designer.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

277Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
Add a Color-Coding Event Handler
1 Add the following variable to the private section
of the form:

FColors: TList;

2 Add the following code to the OnCreate event
of the form:

3 Add the following code to the OnDestroy event
of the form:

procedure TfrmRegions.FormDe-
stroy(Sender: TObject);
begin

FColors.Free;
end;

Code Event handler for the OnCreate Event

procedure TfrmRegions.FormCreate(Sender: TObject);
begin

FColors := TList.Create;
FColors.Add(TObject(clYellow));
FColors.Add(TObject(clRed));
FColors.Add(TObject(clLime));
FColors.Add(TObject(clAqua));
FColors.Add(TObject(clRed));
FColors.Add(TObject(clSilver));
FColors.Add(TObject(clYellow));
FColors.Add(TObject(clRed));
FColors.Add(TObject(clGray));
FColors.Add(TObject(clGreen));
FColors.Add(TObject(clOlive));
FColors.Add(TObject(clGray));
FColors.Add(TObject(clSilver));
FColors.Add(TObject(clMaroon));
FColors.Add(TObject(clSilver));
FColors.Add(TObject(clAqua));
FColors.Add(TObject(clRed));
FColors.Add(TObject(clSilver));
FColors.Add(TObject(clAqua));
FColors.Add(TObject(clMaroon));
FColors.Add(TObject(clGray));
FColors.Add(TObject(clBlue));
FColors.Add(TObject(clYellow));
FColors.Add(TObject(clRed));
FColors.Add(TObject(clSilver));
FColors.Add(TObject(clMaroon));
FColors.Add(TObject(clYellow));
FColors.Add(TObject(clSilver));

end;

278 Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
4 Double-click on the Report component to access
the Report Designer.

5 Click in the white space of the detail band.

6 Select the Events tab of the Object Inspector and
double-click on the BeforeGenerate event. Add the
following code:

3 Configure the Button component:

 Name btnPreview
Caption Preview

4 Add the following code to the OnClick event
handler of the button:

rbRegions.Print;

Note: This event handler sets the color of the
Fields region and the Memo font. The colors were
hand-picked to match the bitmap images. Because
there is only one record per column, the DataPipe-
line.TraversalCount property (which tracks the
number of records traversed) can be used to map
the color from the TList object to the column.

Preview the Report at Run-Time
1 Select the Standard tab of the Delphi component
palette.

2 Add a Button component to the form.

5 Select Project | Compile rbRGProj. Fix any
compilation problems.

6 Select File | Save from the Delphi main menu

7 Run the project..

Code Event handler for the BeforeGenerate Event

procedure TfrmRegions.ppDetailBand1BeforeGenerate(Sender: TObject);
var

lColor: TColor;
begin

if not(rbRegions.DetailBand.OverFlow) then
begin
lColor := TColor(FColors[plBiolife.TraversalCount]);

rgFields.Brush.Color := lColor;
dbmNotes.Font.Color := lColor;

end;
end;

279Using Regions to Logically Group Dynamic Components

REPORT TUTORIALS
8 Click on the Preview button. Click the Last

Page icon . The report should be fourteen
pages, with two fish per page. The Memo font and
the bottommost region should be color-coded. The
report should look like this:

281Forms Emulation with a WMF Image

REPORT TUTORIALS
Forms Emulation with a WMF Image

Overview
This tutorial will show you how to do the follow-
ing:

• Emulate forms using Windows metafiles

• Perform calculations at the dataset level

• Dynamically format an address using a memo

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmFormsEmulation'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbFormE in the My
RB Tutorials directory (established on page 181).

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbFEProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

282 Forms Emulation with a WMF Image

REPORT TUTORIALS
Create a Table, DataSource, and
DataPipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblCustomer
TableName customer.db

4 Add a DataSource component to the form.

5 Configure the DataSource component:

DataSet tblCustomer
Name dsCustomer

6 Select the RBuilder tab of the Delphi compo-
nent palette.

7 Add a DBPipeline component to the form.

8 Configure the DBPipeline component:

DataSource dsCustomer
Name plCustomer

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plCustomer
Name rbFormEmu

Create Calculated Fields
1 Double-click on the table component. The Field
Editor will be displayed.

2 Right-click over the white space of the Field
Editor and select the Add Fields... menu option.
Add all of the fields listed.

3 Right-click over the white space of the Field
Editor and select the New Field... menu option.

4 Type Wages in the Name Edit Box. Set the
DataType to Currency. The Field Type should
default to Calculated.

5 Click OK.

6 Repeat this process to create the following
fields:

SSWages
MedicareWages
FederalTaxWithheld
SSTaxWithheld
MedicareTaxWithheld

7 Close the Field Editor. Select the table compo-
nent.

8 Click on the Events tab of the Object Inspector.

9 Double-click in the OnCalcFields event. An
event handler will be generated. Add the code as
shown below.

Code Event handler for the OnCalcFields Event

procedure TfrmFormsEmulation.tblCustomerCalcFields(DataSet: TDataSet);
begin

tblCustomerWages.AsCurrency := 40000;
tblCustomerSSWages.AsCurrency := 40000;
tblCustomerMedicareWages.AsCurrency := 40000;

tblCustomerFederalTaxWithheld.AsCurrency := 40000 * 0.2;
tblCustomerSSTaxWithheld.AsCurrency := 40000 * 0.05;
tblCustomerMedicareTaxWithheld.AsCurrency := 40000 * 0.01;

end;

283Forms Emulation with a WMF Image

REPORT TUTORIALS
Note: This event handler executes every time the
record position of the customer table changes. Cal-
culations placed in this event must always be intra-
record, which means that the values must be calcu-
lated from other values in the current record or
must be hard-coded (as in this case).

10 Double-click the DBPipeline component to dis-
play the Field Editor.

11 Check to make sure that the calculated fields are
listed. If they are not, then close the Field Editor;
set the AutoCreateFields property to False in the
Object Inspector, then set it back to True. Launch
the Field Editor again and make sure the new fields
are listed.

Note: Toggling the AutoCreateFields property for
the DBPipeline will refresh the field list whenever
you've changed the fields in the dataset.

12 Select Project | Compile rbFEProj from the Del-
phi main menu. Fix any compilation errors.

13 Select File | Save from the Delphi main menu.

Configure the Page Size and Bands
1 Double-click on the Report component to dis-
play the Report Designer.

2 Size and move the Report Designer window so
that the Object Inspector is visible.

3 Select Report | Header from the Report
Designer main menu. The header band will be
removed.

4 Select Report | Footer from the Report Designer
main menu. The footer band will be removed.

5 Click the report selection icon located at the
intersection of the horizontal and vertical rulers.
The report will be selected in the Object Inspector.

6 Expand the PrinterSetup property and set all of
the margins (MarginTop, MarginBottom, etc.) to
zero.

7 Set the height of the detail band to 11.

Create an Image Component
1 Place an image component on the left side
of the detail band.

2 Configure the Image component:

Center False
DirectDraw True
MaintainAspectRatio True
Stretch True

Note: We want the image to be scaled because it's
a little too big to fit on the page, despite the zero
margins. We do not want to distort the form in any
way, so MaintainAspectRatio has been set to True.
Center is not needed because we want to print the
form at a position of 0,0 (this form image already
contains white space around the edges). Finally,
the DirectDraw property will force the image to be
printed directly to the printer without utilizing an
intermediate canvas, which usually results in
higher quality output.

284 Forms Emulation with a WMF Image

REPORT TUTORIALS
3 Right-click over the Image component and
select the Picture... menu option.

4 Open the W2.WMF file. This file should be
located in the RBuilder\Tutorials directory.

5 Set the image component position:

Left 0
Top 0
Width 7.8125
Height 10.9792

Create the Wages DBText Components
1 Select View | Toolbars | Data Tree from the
Report Designer main menu.

2 Position the Data Tree to the left of the Report
Designer (in front of the Object Inspector).

3 Click on the Layout tab of the Data Tree and
configure it:

Create Fields
Style Vertical

Field Font Name Courier New
Field Font Style Regular
Field Font Size 10
Field Font Color Black

4 Click the Data tab. Select the following fields
in order:

Wages
SSWages
MedicareWages

5 Drag the fields into the detail band, positioning
the mouse over the area of the form labeled '1
Wages, tips and other compensation'. Release the
mouse button.

6 Close the Data Tree.

7 Use the Object Inspector to set the width to
1.5208. The width of the selected components will
increase.

8 Right-click over the Wages DBText component
and select the DisplayFormat menu option.

9 Set the Display Format to $#,0.00;($#,0.00),
(the first selection with a dollar sign) select the text
in the Edit box, and copy it to the clipboard. Click
Cancel.

10 Click on the DisplayFormat property in the
Object Inspector. The selected DisplayFormat
should appear. Paste the DisplayFormat into this
field and then click off of the property.

11 Click on the Image and then click on each of the
DBText components in succession, checking to
make sure that the DisplayFormat has been set.

12 Set the position of the Wages DBText compo-
nent:

Left 4.375
Top 0.8021

la
yo

ut
 c

he
ck

285Forms Emulation with a WMF Image

REPORT TUTORIALS
13 Set the position of the SSWages DBText com-
ponent:

Left 4.375
Top 1.1146

14 Set the position of the MedicareWages DBText
component:

Left 4.375
Top 1.4271

Create the Withholding DBText
Components
1 Select the Wages, SSWages, and MedicareW-
ages DBText components.

2 Copy and paste the selection.

3 Drag the selection to the right, positioning it
over '2 Federal income tax withheld' area of the
image.

4 Set the width of the components to 1.6042 in the
Object Inspector.

5 Hold down the Ctrl key and use the arrow keys
to position the components:

Left 6.0521
Top 0.8021

6 Set AutoSize to True in the Object Inspector.
All three DBText components should be autosized.

7 Click on the image to deselect the components.

8 Select the newly created Wages DBText com-
ponent and set the field to FederalTaxWithheld.

9 Select the SSWages DBText component and set
the field to SSTaxWithheld.

10 Select the MedicareWages DBText component
and set the field to MedicareTaxWithheld.

Create the Address Information
1 Scroll to the top and left so that the entire left
corner of the image is visible.

2 Place a label in 'b Employee's identification
number' box.

3 Configure the label:

Caption 78-5676-809898
Left 0.5729
Top 0.8021

4 Place a memo component in the Employer's
address box of the form (box c).

5 Set the memo position:

Left 0.5313
Top 1.125
Width 3.5521
Height 0.7708

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

286 Forms Emulation with a WMF Image

REPORT TUTORIALS
6 Right-click over the memo and access the
Lines... menu option. Enter the following text into
the Memo Editor:

Digital Metaphors Corporation
16775 Addison Rd., Suite 613
Addison, TX 75001

7 Select the memo component.

8 Copy and paste the selection.

9 Drag the new memo component to the
Employee's address box (box f).

10 Set the memo position:

Left 0.5
Top 2.7813

11 Set the memo name to mmEmployeeAddress1.

12 Place a DBText component in the Employee's
social security number box (box d).

13 Configure the DBText component:

AutoSize True
DataField CustNo
DisplayFormat 000-00-0000
Left 0.5
Top 2.0416

14 Place a DBText component in the Employee's
name box (box e).

15 Configure the DBText component:

AutoSize True
DataField Contact
Left 0.5
Top 2.3646

16 Place a label in box '15' of the form. Set the
Caption to X.

17 Position the label:

Left 4.2917
Top 3.4583

Create Duplicate Component
Information
1 Select all of the components on the form image.

2 Copy and paste the selection.

3 Scroll down to the duplicate form.

4 Position the selection within the boxes of the
duplicate form.

5 Hold down the arrow keys and position the
selection:

Left 0.5
Top 5.9896

6 Select the memo in the Employee's Address box
of the duplicate form (box f).

7 Set the memo name to mmEmployeeAddress2.

8 Select File | Save from the Delphi main menu.

la
yo

ut
 c

he
ck

287Forms Emulation with a WMF Image

REPORT TUTORIALS
Write the 'address squeeze' Routine
1 Close the Report Designer.

2 Locate the drop-down list of components at the
top of Object Inspector.

3 Select the Detail band in this list (it should be
named ppDetailBand1).

4 Select the Events tab and double click on the
BeforeGenerate event.

5 Place the following code in the event handler:

BuildEmployeeAddress(mmEmployeeAddress1.Lines);
BuildEmployeeAddress(mmEmployeeAddress2.Lines);

6 Scroll up to the form class declaration. Replace
the private declarations comment with the follow-
ing procedure declaration:

procedure BuildEmployeeAddress(aStrings:

 TStrings);

7 Scroll down below the DetailBand BeforeGen-
erate event handler and insert the code shown
below as the BuildEmployeeAddress procedure.

Note: In this event handler we need to build the
same address for two different memo compo-
nents. In order to accomplish this, we can create a

Code Event handler for the BuildEmployeeAddress Procedure

procedure TfrmFormsEmulation.BuildEmployeeAddress(aStrings: TStrings);
var

lsLine: String;
lsState: String;
lsZIP: String;

begin
{clear memo}
aStrings.Clear;

{add contact}
lsLine := tblCustomer.FieldByName('Contact').AsString;
aStrings.Add(lsLine);

{add address line1}
lsLine := tblCustomer.FieldByName('Addr1').AsString;
if (lsLine <> '') then

aStrings.Add(lsLine);

{add address line2}
lsLine := tblCustomer.FieldByName('Addr2').AsString;
if (lsLine <> '') then

aStrings.Add(lsLine);

{add city, state zip}
lsLine := tblCustomer.FieldByName('City').AsString;

lsState := tblCustomer.FieldByName('State').AsString;

if (lsState <> '') then
lsLine := lsLine + ', ' + lsState;

lsZIP := tblCustomer.FieldByName('ZIP').AsString;

if lsZIP <> '' then
lsLine := lsLine + '' + lsZIP;

aStrings.Add(lsLine);

end;

288 Forms Emulation with a WMF Image

REPORT TUTORIALS
general routine (BuildEmployeeAddress) that we
can call for each component, or we can build the
address in a local string variable and then assign it
to both components. We chose the latter approach
for readability.

Note: This routine simply retrieves each element
of the Employee's address, concatenating and stor-
ing the result in the TStrings object passed in the
parameter. The 'if' statements check for empty
strings, ensuring that no blank lines will appear in
the address.

Preview the Report at Run-Time
1 Select the Standard tab of the Delphi component
palette.

2 Add a Button component to the form.

3 Configure the Button component:

Name btnPreview
Caption Preview

4 Add the following code to the OnClick event
handler of the button:

rbFormEmu.Print;

5 Select Project | Compile rbFEProj. Fix any
compilation problems.

6 Select File | Save from the Delphi main menu.

7 Run the project.

8 Click on the Preview button. The report should
be displayed in the Print Preview form. The report
should look like this:

289Master Detail Report
REPORT TUTORIALS
Master Detail Report

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Delphi data access objects for use in a
master/detail report

• Configure Delphi data access objects for use as a
lookup table

• Use a subreport to print detail data

• Define a group break

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmMasterDetail'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbMD in the My RB
Tutorials directory (established on page 181).

Note: It is important to name the form and save the
form's unit using the names given above because
the report will be used in later tutorials.

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbMDProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

290 Master Detail Report
REPORT TUTORIALS
Create the Table, DataSource, and
DataPipeline for the Master Table
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblCustomer
TableName customer.db

4 Add a DataSource component to the form.

5 Configure the DataSource component:

DataSet tblCustomer
Name dsCustomer

6 Select the RBuilder tab of the Delphi compo-
nent palette.

7 Add a DBPipeline component to the form.

8 Configure the DBPipeline component:

DataSource dsCustomer
Name plCustomer

Create the Table, DataSource, and
DataPipeline for the Detail Table
1 Add a second set of Table, DataSource, and
DataPipeline components to your form.

2 Configure the Table component:

DatabaseName DBDEMOS
Name tblOrder
TableName orders.db

3 Configure the DataSource component:

DataSet tblOrder
Name dsOrder

4 Configure the DBPipeline component:

DataSource dsOrder
Name plOrder

Create the Table, DataSource, and
DataPipeline for the Lookup Table
1 Add a third set of Table, DataSource, and
DataPipeline components to your form.

2 Configure the Table component:

DatabaseName DBDEMOS
Name tblEmployee
TableName employee.db

3 Configure the DataSource component:

DataSet tblEmployee
Name dsEmployee

4 Configure the DBPipeline component:

DataSource dsEmployee
Name plEmployee

Define the Relationship between the
Customer and Order Table
1 Select the Order table component.

2 Set the MasterSource property to dsCustomer.

3 Select the MasterFields property and click the
“...” button. This displays the Field Link Designer.

291Master Detail Report
REPORT TUTORIALS
4 Click on the Available Indexes drop-down list
and select CustNo.

5 Select the CustNo in the Detail Fields list.

6 Select the CustNo item in the Master Fields list.

7 Click the Add button. A new item (CustNo
CustNo) will be added to the Joined Fields list.

8 Click the OK button to close the dialog.

Note: The IndexName property is now set to
CustNo. This property was automatically set when
we selected the CustNo index in step 4 above.

Note: To establish a master detail relationship,
the detail table must be indexed on the linking field
value or values. You can think of an Index as
defining the sort order for the table. Thus, if we
need to link the Order table to the Customer table
based on CustNo, the Order table must have an
index (i.e. sort order) based upon CustNo.

Define the Relationship between the
Order and Employee Table
1 Select the Employee table component.

2 Set the MasterSource property to dsOrder.

3 Launch the Field Link Designer from the Mas-
terField property.

4 Select the EmpNo item field in the Detail Fields
list.

5 Select the EmpNo field in the Master Fields list.

6 Click the Add button. A new item (EmpNo
EmpNo) will be added to the Joined Fields list.

7 Click the OK button to close the dialog.

8 Select File | Save from the Delphi main menu.

Note: In this example you will notice the fields
being linked have the same name. This is a good
standard to follow when designing a database.
However, it is not a requirement for linking fields.

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plCustomer
Name rbOrderSummary

3 Double-click on the Report component to dis-
play the Report Designer.

4 Position the Report Designer so that the Object
Inspector is visible.

5 Place a subreport component (from the
Advanced toolbar) in the detail band.

Note: When you add the subreport, two tabs will
be displayed at the bottom of the workspace: Main
and SubReport1. There is a separate workspace for
the main report and for each subreport. You can
access the workspace for any given report by click-
ing on the tab.

292 Master Detail Report
REPORT TUTORIALS
6 Use the Object Inspector to set the DataPipeline
property of the subreport to plOrder.

Note: When we initially set the DataPipeline prop-
erty of the main report to the customer table, we
were telling the report to print one detail band for
each customer. Now that we have set the
DataPipeline property of the subreport, we're tell-
ing the subreport to traverse all orders for each cus-
tomer, printing one detail band for each order.

7 Select Report | Data from the main menu.
plCustomer should be selected as the data pipeline.

Note: The Data dialog can be used as a convenient
way to set the DataPipeline property of a report.

8 Position the subreport at the top of the detail
band.

9 Drag the the detail band divider up until it is
flush with the bottom of the subreport.

Create the Header Band Labels
1 Set the height of the header band to 2.5 inches.

2 Place a label in the upper left corner of the
header band.

3 Configure the label:

Caption Order Summary
Font Name Times New Roman
Font Size 12
Font Style Bold & Italic

4 Place another label at the top center of the
header band.

5 Configure the label:

Caption Marine Adventures &
Sunken Treasure Co.

Font Name Times New Roman
Font Size 16
Font Style Bold & Italic
Font Color Navy
Text Alignment Centered

6 Center the label by clicking the Center Horizon-

tally in Band icon on the Align or Space tool-
bar.

7 Select both labels and drag them to the top of
the header band.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

293Master Detail Report
REPORT TUTORIALS
Create the Header Band Shape
1 Place a shape component in the left side of the
header band.

2 Select 'Rounded Rectangle' from the drop-down
list at the upper left corner of the Report Designer.

3 Use the Draw toolbar to set the Fill and Line
color of the shape to Navy.

4 Drag the shape to the left edge of the band and
position the top at the 1 inch mark on the vertical
ruler.

5 Set the size of the shape:

Width 3.5
Height 0.8

6 Select File | Save from the Delphi main menu.

Use the Data Tree to Complete the
Header Band Layout
1 Select View | Toolbars | Data Tree from the
Report Designer menu. Position the Data Tree to
the left of the Report Designer, in front of the
Object Inspector.

2 Click the Layout tab at the bottom of the Data
Tree and configure the drag-and-drop settings:

Create All
Style Vertical

Label Font Name Times New
Label Font Style Italic
Label Font Size 12 point
Label Font Color White

Field Font Name Times New
Field Font Style Bold
Field Font Size 12 point
Field Font Color White

3 Click on the Data tab of the Data Tree. Make
sure that the Customer data pipeline is selected.

4 Click on the Company field and then Ctrl-click
the CustNo field.

5 Drag the selected fields onto the workspace,
positioning the mouse just inside the upper left cor-
ner of the shape. Release the mouse button. Two
DBText components and corresponding labels will
be created.

la
yo

ut
 c

he
ck

294 Master Detail Report
REPORT TUTORIALS
6 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 0.1458
Top 1.1875

7 Click in the white space of the header band to
deselect the components.

8 Select the CustNo label, then Shift-click the cor-
responding DBText component. Click on the Left
Justify icon on the Format toolbar.

9 Right-click over the Company DBText compo-
nent and set the AutoSize property to True.

10 Right-click over the CustNo DBText compo-
nent and set the AutoSize property to True.

Create a Group on the CustNo Field
1 Select Report | Groups from the Report
Designer main menu. The Groups dialog will be
displayed.

2 Select the 'plCustomer.CustNo' field from the
drop-down list at the top of the dialog.

3 Click the Add button. A new group will be cre-
ated.

4 Click the Start New Page and Reset Page Num-
ber check boxes near the middle of the dialog. This
will cause the listing for each customer to start on a
new page and appear with its own page numbers.

Note: Because groups are based on a change in
field value, the field on which a group is based
should always be used to order the records.
ReportBuilder does not sort records; therefore, you
must order the records using an Index or by speci-
fying an Order By clause in an SQL query.

5 Click the OK button. You should see two new
bands: one above and one below the detail band.
These bands have no height; thus, no white space
appears above the dividers.

6 Select File | Save from the Delphi main menu.

la
yo

ut
 c

he
ck

295Master Detail Report
REPORT TUTORIALS
Begin the Order Information Layout
1 Click the 'SubReport1' tab at the bottom of the
designer.

Note: The selected object in the Object Inspector
will change to ppChildReport1. The subreport
component is a container for the child report. The
subreport controls the properties that direct the
print behavior of the report. The subreport also
controls the report's relationship to other compo-
nents within the main report layout. The child
report contains the actual report layout (bands,
labels, etc.) and is accessible via the Report prop-
erty of the subreport component (i.e.
SubReport1.Report).

2 Place a shape component in the left side of the
title band.

3 Use the Draw toolbar to set the Fill and Line
color of the shape to Navy.

4 Right click over the shape to display the popup
menu. Select the ParentHeight and ParentWidth
options. The shape will resize and cover the entire
band.

5 Click the Layout tab at the bottom of the Data
Tree and configure the drag-and-drop settings:

Create All
Style Tabular

Label Font Name Times New
Label Font Style Bold
Label Font Size 12 point
Label Font Color White

Field Font Name Times New
Field Font Style Regular
Field Font Size 10 point

6 Click the Data tab at the bottom of the Data
Tree and select the plOrder data pipeline.

7 Use the Ctrl-click method to select these fields:

OrderNo
SaleDate

8 Drag the selected fields into the title band, posi-
tioning the mouse at the bottom left corner of the
shape. Release the mouse button to create the
components.

9 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 0.1458
Top 0.2813

10 Set the label captions to Number and Date.

11 Left justify all of the components.

12 Right-click over the SaleDate DBText compo-
nent and set the DisplayFormat to 'mm/dd/yyyy'.

Note: The Display Format dialog automatically
checks the data type of the component and displays
a list of appropriate formats.

13 Set the width of the Date label and the corre-
sponding DBText component to 0.8.

14 Select the DBText components and move them
to a top position of 0.0521.

la
yo

ut
 c

he
ck

296 Master Detail Report
REPORT TUTORIALS
Complete the Order Information Layout
1 Select the plEmployee DataPipeline in the Data
Tree.

2 Drag the FirstName field into the title band,
positioning the mouse to the immediate right of the
Date label.

3 Position the selection:

Left 2.2083
Top0.2813

4 Align the top of the new DBText with the top of
the Date DBText component.

5 Set the label Caption to Sales Rep.

6 Place a shape component in the left side of the
title band.

7 Align the left edge of the shape with the Num-
ber label and stretch the width until the right edge
is flush with the right edge of the Sales Rep label.

8 Configure the shape:

Top 0.1
Height 0.08
Fill Color White
Line Color White

9 Place a label directly on top of the shape, posi-
tioning it near the shape's midpoint.

10 Configure the label:

AutoSize False

Caption Order

Font Name Times New Roman
Font Size 12
Font Style Bold
Font Color White
Highlight Color Navy
Text Alignment Centered

Width 0.55

11 Select the white shape, then Shift-click the

Order Label. Click on the Align Middle and

Align Center icons of the Align or Space tool-
bar.

12 Select File | Save from the Delphi main menu.

13 Click the Preview tab to view the report. Click
the next page buttons to preview several pages.
When you are done previewing, return to the
Design workspace.

la
yo

ut
 c

he
ck

297Master Detail Report
REPORT TUTORIALS
Lay Out the Shipping Information
Components
1 Select the plOrder DataPipeline in the Data Tree
and select the following fields in order:

ShipVia
ShipDate

2 Drag the selection into the title band, to the
immediate right of the Sales Rep label. Position
the selection:

Left 3.875
Top 0.2813

3 Align the top of the new DBText components
with the top of the existing components.

4 Set the label captions to Via and Date.

5 Set the width of the Date label and correspond-
ing DBText component to 0.8.

6 Set the Display Format of the Date DBText
component to 'mm\dd\yyyy'.

7 Select the Order label, then Shift-click the white
shape behind it.

8 Copy and paste the selection.

9 Position the new components above the Via and
Date labels.

10 Set the position and size of the shape:

Left 3.8333
Width 1.61

11 Align the top of the new shape with the top of
the existing shape.

12 Right-click over the label and select the Bring to
Front menu option.

13 Set the label caption to Ship.

14 Select the shape component, then Shift-click the

Ship label. Click on the Align Middle and

Align Center icons of the Align or Space tool-
bar.

15 Select File | Save from the Delphi main menu.
Preview as desired.

Lay Out the Payment Information
Components
1 Select the plOrder DataPipeline in the Data Tree
and select the following fields in order:

PaymentMethod
AmountPaid

2 Drag the selection into the title band, to the
immediate right of the ShipDate label. Position the
selection:

Left 5.5833
Top 0.2813

3 Align the top of the new DBText components
with the top of the existing components.

4 Set the label captions to Method and Amount.

5 Set the DisplayFormat of the Amount DBText
component to $#,0.00;($#,0.00) (the first format
with a dollar sign).

6 Right justify the text in the Amount label.

la
yo

ut
 c

he
ck

298 Master Detail Report
REPORT TUTORIALS
7 Select the Ship label, then Shift-click the white
shape behind it.

8 Copy and paste the selection.

9 Drag the new components to the right, aligning
the left edge of the shape with the left edge of the
Method label.

10 Align the top of the new shape with the top of
the existing shapes.

11 Set the width of the new shape to 2.27.

12 Right-click over the label and select Bring to
Front.

13 Configure the label:

Caption Payment
Width 0.7

14 Select the shape, then Shift-click the label.

Click on the Align Middle and Align Center

 icons of the Align or Space toolbar.

15 Select File | Save from the Delphi main menu.
Preview as desired.

Complete the Detail Band
1 Place a Line component in the upper left corner
of the detail band.

2 Locate the Line Position drop-down list at the
upper left of the Report Designer.

3 Select Left from this list. A vertical line will
appear on left side of the line component.

4 Configure the Line:

Color Navy
Thickness 1 1/2 point
Left 0
Width 0.10
ParentHeight True

5 Copy and paste the line component.

6 Select Right from the Line Position drop-down
list. The vertical line will move to the right side of
the line component.

7 Drag the new line to the right side of the detail
band. Hold down the Ctrl key and use the right
arrow button to position the line so it is flush with
the right edge of the band. Preview to make sure
the shape and the line in the title band are flush.

8 Set the height of the detail band to 0.3.

9 Set the height of the summary band to 0.3125.

10 Select File | Save from the Delphi main menu.
Preview as desired.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

299Master Detail Report
REPORT TUTORIALS
Lay Out the Summary Band
1 Place a DBCalc component in the summary
band.

2 Configure the DBCalc component:

DataField Amount Paid

Font Name Times New Roman
Font Size 10
Font Style Bold
Font Color Black

Top 0.083
AutoSize True
DisplayFormat $#,0.00;($#,0.00)
Text Alignment Right justified

3 Select the AmountPaid DBText component in
the detail band, then Shift-click the DBCalc com-
ponent. Click on the Grow Width to Largest icon

 of the Size toolbar. Click on the Align Right

icon of the Align or Space toolbar.

4 Place a line directly below the DBCalc compo-
nent.

5 Configure the Line:

Position Bottom
Style Double
Top 0.25
Width 1.18
Height 0.05

6 Hold down the Ctrl key and use the right arrow
key to align the right edge of the line with the right
edge of the DBCalc.

7 Place a label to the left of the DBCalc compo-
nent. Configure the label:

Caption Total
Font Name Times New Roman
Font Size 10
Font Style Bold
Left 6.2292

8 Align the top of the label with the top of the
DBCalc.

9 Place a DBText component to the left of the
label. Configure the DBText:

DataPipeline plCustomer
DataField Company
Font Name Times New Roman
Font Size 10
Font Style Bold
Left 5
Autosize True
Text Alignment Right justified

10 Align the top of the DBText component with the
top of the label.

11 Place a line component in the upper left corner
of the summary band. Configure the line:

ParentWidth True
Line Color Navy
Line Thickness 2 1/4 point
Top 0
Height 0.05

12 Select File | Save from the Delphi main menu.
Preview as desired.

la
yo

ut
 c

he
ck

300 Master Detail Report
REPORT TUTORIALS
Lay Out the Footer Band
1 Click on the 'Main' tab to return to the main
report.

2 Place a SystemVariable component in the lower
left corner of the footer band.

3 Select PrintDateTime from the drop-down list at
the upper left corner of the Report Designer.

4 Set the left position to 0.0625.

5 Set the font:

Font Name Times New Roman
Font Size 10
Font Color Black
Font Style Regular
Text Alignment Left justified

6 Place another System Variable component in
the lower right corner of the footer band.

7 Select PageSetDesc from the drop-down list at
the upper left corner of the Report Designer.

8 Set the left position to 7.3229.

9 Set the font:

Font Name Times New Roman
Font Size 10
Font Color Black
Font Style Regular
Text Alignment Right justified

10 Align the tops of the System Variable compo-
nents.

11 Drag the footer band divider up until it meets
the bottom of the System Variable components.

12 Select File | Save from the Delphi main menu.
Preview the completed report.

Preview the Report at Run-Time
1 Close the Report Designer.

2 Select the Standard tab of the Delphi component
palette.

3 Add a Button component to the form.

4 Configure the Button component:

Name btnPreview
Caption Preview

5 Add the following code to the OnClick event
handler of the button:

rbOrderSummary.Print;

6 Select File | Save from the Delphi main menu.

la
yo

ut
 c

he
ck

301Master Detail Report
REPORT TUTORIALS
7 Run the Project. Click the Preview button. The
report should look like this:

303Master Detail Detail Report
REPORT TUTORIALS
Master Detail Detail Report

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Delphi data access objects for use in a
master/detail/detail report

• Configure Delphi data access objects for use as a
lookup table

• Use a subreport to print detail data

• Perform calculations

• Define a group break

Create a New Application
Note: This tutorial builds upon the Master-Detail
report created in the previous section. You can
either complete this tutorial or copy the rbMD form
from the RBuilder\Tutorials directory.

1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Close the new form and unit without saving.

3 Select File | Open from the Delphi main menu.
Locate the rbMD.pas unit and open it. Change the
form name to 'frmMasterDetailDetail'.

4 Select File | Save As from the Delphi menu and
save the form under the name rbMDD in the My
RB Tutorials directory (established on page 181).

Note: It is important to name the form and save the
form using the names given above because the
report will be used in later tutorials.

5 Select View | Project Manager from the Delphi
main menu.

6 Right-click over the project name in the Project
Manager (usually Project1.exe) and select Add.
Add the rbMDD form to the project.

7 Right-click over the project name once again
and select the Save menu option.

8 Save the project under the name rbMDDProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

304 Master Detail Detail Report
REPORT TUTORIALS
Update the Report Name
1 Select the report component.

2 Set the Name to rbOrderDetail.

3 Double-click the Preview button on your Delphi
form.

4 In the OnClick event handler change the report
name to:

rbOrderDetail.Print;

Add the Table, DataSource and
DataPipeline for the Items Detail Table
1 Add a Table component to the form.

2 Configure the Table component:

DatabaseName DBDEMOS
Name tblItem
TableName items.db

3 Add a DataSource component to the form.

4 Configure the DataSource component:

DataSet tblItem
Name dsItem

5 Select the RBuilder tab of the Delphi compo-
nent palette.

6 Add a DBPipeline component to the form.

7 Configure the DBPipeline component:

DataSource dsItem
Name plItem

Define the Relationship Between the
Order and Items Table
1 Select the Item table component.

2 Set the MasterSource property to dsOrder.

3 Select the MasterFields property and press the
“...” button. This displays the Field Link Designer.

4 Click on the Available Indexes drop-down list
and select ByOrderNo.

5 Select the OrderNo item in the Detail Fields list.

6 Select the OrderNo item in the Master Fields
list.

7 Click the Add button. A new item (OrderNo
OrderNo) will be added to the Joined Fields list.

8 Press the OK button to close the dialog.

Note: The IndexName property is now set to
ByOrderNo. This property was set automatically
when we selected the ByOrderNo index in step 4
above. To establish a master detail relationship,
the detail table must be indexed on the linking field
value or values. You can think of an Index as
defining the sort order for the table. Thus, if we
need to link the Items table to the Order table based
on OrderNo, the Items table must have an index
(i.e. sort order) based upon OrderNo.

305Master Detail Detail Report
REPORT TUTORIALS
Create the Table, DataSource and
DataPipeline for the Parts Lookup
Table
1 Add a Table component to your form.

2 Configure the Table component:

DatabaseName DBDEMOS
Name tblPart
TableName parts.db

3 Add a DataSource component to the form.

4 Configure the DataSource component:

DataSet tblPart
Name dsPart

5 Select the RBuilder tab of the Delphi compo-
nent palette.

6 Add a DBPipeline component to the form.

7 Configure the DBPipeline component:

DataSource dsPart
Name plPart

Define the Relationship Between the
Item and Parts Table
1 Select the Part table component.

2 Set the MasterSource property to dsItem.

3 Launch the Field Link Designer from the Mas-
terFields property.

4 Select the PartNo in the Detail Fields list.

5 Select the PartNo in the Master Fields list.

6 Click the Add button. A new item (PartNo
PartNo) will be added to the Joined Fields list.

7 Click the OK button to close the dialog.

Note: In this example you will notice the fields
being linked have the same name. This is a good
standard to follow when designing a database.
However, it is not a requirement for linking fields.

8 Select File | Save from the Delphi main menu.

Update the Report Title
1 Access the Report Designer.

2 Locate the Order Summary label in the upper
left corner of the header band.

3 Set the caption to Order Detail.

Create SubReport2 and Connect it to
the Data
1 Click the 'Subreport1' tab.

2 Right-click over the vertical line component
located at the extreme left of the detail band.
Select the StretchWithParent and ReprintOnOver-
flow menu options.

3 Right-click over the vertical line component at
the far right of the detail band. Select the Stretch-
WithParent and ReprintOnOverflow menu options.

Note: The detail band will contain a child-type
subreport that will stretch to print all of the items
for the current order. By setting StretchWithParent
to True, we are saying “Whatever the height of the
detail band is in the report, resize the line to match
it.” Sometimes the items for an order will overflow
onto an additional page. By setting Reprint-
OnOverFlow to True we are saying “When the
detail band overflows onto an additional page,
make sure to reprint the line.”

306 Master Detail Detail Report
REPORT TUTORIALS
4 Set the height of the detail band to 0.4687.

5 Place a subreport component just below the
DBText components in the detail band.

6 Right-click over the subreport and set Parent-
Width to false, then set the position:

Left 0.875
Top 0.2708
Width 6.25

7 Use the drop-down list at the upper left corner
of the Report Designer to set the subreport's
DataPipeline to plItem.

8 Select File | Save from the Delphi main menu.

Remove the Title and Summary Band
1 Click the 'SubReport2' tab.

2 Select Report | Title from the Report Designer
menu to remove the title band.

3 Select Report | Summary from the Report
Designer menu to remove the summary band.

Note: Within the context of a child subreport, the
title band would print once at the beginning of the
report and the summary band would print once at
the end. This would be fine for our purposes
except that all of the items for a particular order
may not fit on a single page, and so the subreport
may overflow onto additional pages. When this
happens, we want to reprint the header labels for
the item fields. The ReprintOnSubsequent prop-
erty of Group Header bands will work nicely for
this requirement, so we will be using a group
header and group footer band instead of the title
and summary band.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

307Master Detail Detail Report
REPORT TUTORIALS
Create a Group on the 'OrderNo' Field
1 Select Report | Groups from the Report
Designer main menu. The Groups dialog will be
displayed.

2 Select plItem.OrderNo from the drop-down list
at the top of the dialog and click the Add button. A
new entry entitled Group[0]: plItem.OrderNo will
be added to the list.

3 Click the OK button. You should see two new
bands: one above and one below the detail band.
These bands have no height; thus, no white space
appears above the dividers.

Note: We created a group on the OrderNo field
because this is the linking field between the Order
and Item tables. This field value will never change
during the course of the subreport's generation;
thus, the group will never 'break'. The effect will
be that the group header prints once at the begin-
ning and once for all subsequent pages. The group
footer will print once at the end. You can use this
'no break' technique whenever you need a separa-
tion header in a subreport.

4 Set the height of the new bands:

Group Header Band 0.30
Group Footer Band 0.45

5 Select File | Save from the Delphi main menu.

Lay Out the Group Header Band for the
SubReport
1 Place a shape component in the upper left corner
of the group header band.

2 Configure the shape component:

Left 0
Width 6.25
Height 0.2
Fill Color Navy
Line Color Navy

3 Hold down the Ctrl key and use the down arrow
key to move the shape until the bottom is flush
with the bottom of the band.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

308 Master Detail Detail Report
REPORT TUTORIALS
Begin Laying Out the Items Information
Components for the SubReport
1 Select View | Toolbars | Data Tree from the
Report Designer menu. Position the Data Tree to
the left of the Report Designer.

2 Click the Layout tab at the bottom of the Data
Tree and configure the drag-and-drop settings as
follows:

Create All
Style Tabular

Label Font Name Times New Roman
Label Font Style Bold
Label Font Size 10 point
Label Font Color White

Field Font Name Times New Roman
Field Font Style Regular
Field Font Size 10 point
Field Font Color Black

3 Click on the Data tab and then select the plItem
data pipeline from the list at the top.

4 Select the ItemNo field.

5 Drag the selection into the group header band,
positioning the mouse just inside the upper left cor-
ner of the shape. Release the mouse button. A
DBText component and corresponding label will
be created.

6 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 0.1042
Top 0.1354

7 Left justify the components.

8 Set the label caption to Item No.

9 Select the plPart data pipeline in the Data Tree.

10 Select the Description field.

11 Drag the selection into the group header band,
positioning the mouse to the immediate right of the
Item No. label. Release the mouse button. A
DBText component and corresponding label will
be created.

12 Hold down the Ctrl key and use the arrow keys
to position the selection:

Left 1.125
Top 0.1354

13 Hold down the Shift key and use the left arrow
key to decrease the width of both components to
1.7083.

14 Set the top of both DBText components in the
detail band to 1.6667.

la
yo

ut
 c

he
ck

309Master Detail Detail Report
REPORT TUTORIALS
Complete the Items Information Layout
1 Select the Qty field of the plItem data pipeline
in the Data Tree.

2 Drag the selection to the immediate right of the
Description label.

3 Position the selection:

Left 2.8646
Top 0.1354

4 Right justify the components.

5 Set the label caption to Quantity.

6 Align the top of the new DBText with the top of
the existing DBText components.

7 Select the List Price field of the plPart data pipe-
line.

8 Drag the selection to the immediate right of the
Quantity label.

9 Position the selection:

Left 3.8646
Top 0.1354

10 Right justify the components.

11 Set the label caption to List Price.

12 Set the Display Format of the DBText compo-
nent to $#,0.00;($#,0.00).

13 Align the top of the new DBText component
with the top of the existing DBText components.

14 Place a label component to the right of the List
Price label.

15 Configure the label:

AutoSize False
Caption Item Total
Font Name Times New Roman
Font Size 10 point
Font Style Bold
Font Color White
Left 4.8646
Top 0.1354
Width 0.9792
Text Alignment Right justified

16 Place a variable component in the detail band
just below the Item Total label.

17 Configure the variable component:

Name vrItemTotal
DataType dtCurrency
Font Name Times New Roman
Font Size 10 point
Font Style Regular
Font Color Black
Text Alignment Right
DisplayFormat $#,0.00;($#,0.00)
Width 0.9792

18 Select the Item Total label, then Shift-click the
vrItemTotal variable. Click the Align Right icon

 on the Align or Space toolbar.

19 Align the top of the variable component with the
top of the DBText components.

310 Master Detail Detail Report
REPORT TUTORIALS
20 Select File | Save from the Delphi main menu.

Complete the Detail Band Layout for
the SubReport
1 Place a shape component in the upper left corner
of the detail band.

2 Configure the shape component:

Left 0.0
Top 0.0
Width 6.25
Height 0.2187
Line Color Black
Fill Color None

3 Right-click over the shape and choose the Send
To Back menu option.

4 Set the height of the detail band to 0.2083.

Note: Notice how the bottom of the shape extends
one screen pixel beyond the end of the detail band.
This technique allows the shapes to overlap when
rendered on the page, creating the effect of a single
line between detail bands.

Lay Out the Group Footer Band for the
SubReport
1 Select the shape component in the group header
band.

2 Copy and paste the selection. Drag the new
shape into the group footer band and position it at
the upper left corner:

Left 0.0
Top 0.0

3 Select the Item Total label in the group header
band.

4 Copy and paste the selection. Drag the new
label into the group footer band.

5 Set the label caption to Total.

6 Select the List Price label in the group header
band, then Shift-click the Total label. Click the

Right Align icon on the Align or Space toolbar.

7 Select the shape in the group footer band, then
Shift-click to select the Total label. Click the
Align Center icon on the Align or Space toolbar.

8 Select the vrItemTotal variable in the detail
band.

9 Copy and paste the selection. Drag the new
variable into the group footer band.

Note: This technique of copy/paste can be much
more efficient than creating a new component
because the DisplayFormat and Font proper values
are returned.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

311Master Detail Detail Report
REPORT TUTORIALS
10 Configure the variable:

Name vrOrderTotal
Font Color White

11 Use the Align or Space toolbar to Right Align
the vrOrderTotal variable with the vrItemTotal
variable.

12 Align the top the vrOrderTotal variable with the
top of the Total label.

13 Select File | Save from the Delphi main menu.

Code the Calculations for the Totals
1 Select the vrItemTotal variable in the detail
band.

2 Select the Events tab of the Object Inspector.

3 Double-click on the OnCalc event. An event
handler shell will be generated in your Delphi
form.

4 Add the following code to this event handler:

Value := plItem['Qty']*plPart['ListPrice'];

Note: This event handler retrieves the quantity and
list price of the item and returns the total amount
via the Value parameter. The result will become
the value of the variable component. The OnCalc
event will fire once for each item record.

5 Return to the Report Designer and select the
vrOrderTotal variable in the group footer band.

6 Code the OnCalc event:

Value := Value + vrItemTotal.Value;

Note: This event handler retrieves the current total
for the item and adds it to the running total for the
order. This OnCalc event will also fire once for
each item record.

7 Return to the Report Designer, right-click over
the vrOrderTotal variable, and select the Timing...
menu option.

8 Select 'GroupEnd' from the Reset On drop-
down list. Select 'Group0: OrderNo' from the
Group drop-down list.

Note: The Timing dialog allows you to control
when the OnCalc event will fire and when the vari-
able value will be reset. For this total, we want to
calculate the value each time a record is traversed
and we want to reset the value after the group
footer has completed printing.

9 Select Project | Compile rbMDDProj. Fix any
compilation problems.

10 Select File | Save from the Delphi main menu.

la
yo

ut
 c

he
ck

312 Master Detail Detail Report
REPORT TUTORIALS
Complete the Layout for SubReport1
1 Click the 'SubReport1' tab.

2 Right-click over the Orderno DBText compo-
nent located on the far left side of the detail band.
Set the ReprintOnOverFlow menu option to True.

Note: OverFlow occurs when the detail band runs
out of page space on the current page and must
complete printing on the next page. For this report
we want to print the ItemNo followed by 'Contin-
ued...' at the top of the page when the orders for a
given customer overflow onto an additional page.

3 Place a label in the detail band and configure it:

Caption Continued...
Name lblContinued
Visible False
Font Name Times New Roman
Font Size 10
Font Style Regular
Font Color Black
Text Alignment Left justified

4 Select the SaleDate DBText component, then
Shift-click the Continued label.

5 Click the Align Top and Align Left
icons on the Align or Space toolbar.

6 Add the following code to OnPrint event of the
Continued label:

lblContinued.Visible :=

ppChildReport1.Detail.OverFlow;

7 Select Project | Compile rbMDDProj. Fix any
compilation problems.

8 Select File | Save from the Delphi main menu.

Note: The OverFlow property of the detail band
will only be True when the orders for the current
customer do not fit on the page and therefore must
overflow onto an additional page. When this hap-
pens, the label will be visible.

Convert the Title Band to a Group
Header Band
1 Select Report | Groups and create a group on
plOrder.CustNo. Uncheck the 'Keep group
together' option.

2 Set the height of the group header band to
0.5208.

3 Right click over the shape in the title band and
set ParentHeight and ParentWidth to False.

4 Select all of the components in the title band,
including the shape.

5 Drag the selection into the group header band.

6 Select Report | Title from the Report Designer
main menu to remove the title band.

7 Preview the completed report.

la
yo

ut
 c

he
ck

313Master Detail Detail Report
REPORT TUTORIALS
Note: You should be able to get a general idea of
how things look. However, you will need to pre-
view the report at run-time to see the results of the
calculations and other event handlers.

Preview the Report at Run-Time
1 Close the Report Designer.

2 Select Project | Compile rbMDDProj. Fix any
compilation problems.

3 Select File | Save from the Delphi main menu.

4 Run the project.

5 Preview the completed report. The report
should look like this:

315Interactive Previewing with Drill-Down Subreports

REPORT TUTORIALS
Interactive Previewing with Drill-Down Subreports

Overview
This tutorial will show you how to do the follow-
ing:

• Use the drill-down feature of child-type subre-
ports

Create a New Application
Note: This tutorial builds upon the master-detail-
detail report created in the previous section. You
can either complete the previous tutorial or copy
the rbMDD form from the RBuilder\Tutorials
directory.

1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Close the new form and unit without saving.

3 Select File | Open from the Delphi menu.
Locate the rbMDD.pas unit and open it.

4 Change the form name to 'frmDrillDownSubre-
port'.

5 Select File | Save As from the Delphi menu and
save the form under the name rbDrillD in the My
RB Tutorials directory (established on page 181).

6 Select View | Project Manager from the Delphi
main menu.

7 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Add
menu option. Add the rbDrillD form to the project.

8 Right-click over the project name in the Project
Manager and select the Save menu option.

9 Save the project under the name rbDDProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

316 Interactive Previewing with Drill-Down Subreports

REPORT TUTORIALS
Invoke the Report Designer and
Configure the Drill-Down
1 Double-click on the Report component to dis-
play he Report Designer.

2 Size and move the Report Designer window so
that the Object Inspector is visible.

3 Select the PageCount System Variable in the
footer band. Set the variable type to PageNoDesc.

4 Select Report | Pass Setting | One Pass from the
Report Designer main menu.

Note: Drill-down reports should always be set to
one-pass. Otherwise, the entire report will be gen-
erated each time the user expands the subreport.

5 Click the 'SubReport1' tab.

6 Place a shape in the left side of the detail band.

7 Configure the shape:

Name shpClickMe
ParentWidth True
Top 0
Height 0.25
Fill Color Yellow
Line Color Yellow

8 Right-click over the shape and select the Send to
Back menu option. The shape should appear
behind the other components.

9 Right-click over the Item subreport and select
DrillDown.

10 Select the shpClickMe from the drop-down list
and click OK.

Note: By specifying the DrillDown option of the
subreport, we've associated the yellow shape with
the report. Once we've done this, the subreport will
not print until the shape is clicked in the Print Pre-
view Window. The DrillDown... dialog sets the
DrillDownComponent property of the SubReport.

11 Select File | Save from the Delphi main menu.

12 Preview the report. The items subreport should
not appear. When you move the mouse over the
yellow area, the cursor should change to a pointing
hand. When you click the yellow area, the subre-
port should appear. Clicking the same area again
should cause the subreport to disappear.

la
yo

ut
 c

he
ck

317Interactive Previewing with Drill-Down Subreports

REPORT TUTORIALS
The report should look like this:

Initial View

First three subreports expanded

319Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
Hooking Reports Together with Section-Style Subreports

Overview
This tutorial will show you how to do the follow-
ing:

• Create a single report from two different reports

• Save and load report layouts from a file

• Re-assign event handlers when a report is used in
a new form

Title Page

First Page of the Customer List Report

First Page of the Customer List Report

Create a New Application
Note: This tutorial uses the Customer List and the
Stock Summary reports created in earlier tutorials.
If you have not completed these tutorials, you can
use the completed tutorials in the RBuilder\Tutori-
als directory.

1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmSectionSubreports'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbSectSR in the My
RB Tutorials directory (established on page 181).

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbSSProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

320 Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
Transfer the Customer List Report to
the Form
1 Open the form containing the Customer List
report (rbCust.pas from “A Simple Report...”).

2 Double-click on the Report component to dis-
play the Report Designer.

3 Select File | Save As from the Report Designer
main menu.

4 Save the report template in the My RB Tutorials
directory under the name CustList.

Note: Saving a report layout to file is a quick and
easy way to make the report more portable. Later
in this tutorial we will open this saved layout in a
subreport. Layouts can also be loaded at run-time
using the Report.Template.LoadFromFile or Load-
FromDatabase method.

5 Close the Report Designer.

6 Select the data access components (tblCus-
tomer, dsCustomer, plCustomer).

7 Copy the components into your clipboard.

8 Select View | Forms from the Delphi main
menu. Double-click on frmSectionSubreports to
make this form visible.

9 Paste the components onto this form.

10 Place a standard Delphi label on the form,
directly above these components.

11 Set the label caption to 'Customer List Data'.

12 Set the Visible property of the label to False.

Note: This invisible label will not be used by the
report: it simply serves as a reminder of how these
data access components are used. Whenever you
have multiple sets of data access components on a
form, it is a good idea to label them. An alternate
way to accomplish this is to set the Tools | Envi-
ronment Options | Preferences | Show Component
Captions option on, but this method requires that
you space the components more widely than we
find preferable.

13 Close the rbCust unit.

Transfer the Stock Summary Report to
the Form
1 Open the form containing the Stock Summary
report (rbStock.pas from the “Groups, Calcula-
tions, ...” tutorial).

2 Double-click on the Report component to dis-
play the Report Designer.

3 Select File | Save As from the Report Designer
main menu.

4 Save the report template in the My RB Tutorials
directory under the name StockSum.

5 Close the Report Designer.

6 Select the data access components (qryStock,
dsStock, plStock).

7 Copy these components into your clipboard.

8 Select View | Forms from the Delphi main
menu. Double-click on frmSectionSub to make
this form visible.

321Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
9 Paste the components into the form and drag
them to a position below the Customer List data
access components.

10 Place a standard Delphi label on the form,
directly above these components.

11 Set the Caption to 'Stock Summary Data'.

12 Set the Visible property of the label to False.

13 Close the rbStock unit.

14 Select File | Save from the Delphi main menu.

Create and Configure the Main Report

1 Add a Report component to the form.

2 Name the Report component rbSectSub.

3 Double-click on the Report component to dis-
play the Report Designer.

4 Size and move the Report Designer window so
that the Object Inspector is visible.

5 Select Report | Header from the Report
Designer menu. The header band will be removed.

6 Select Report | Footer. The footer band will be
removed.

Create the Customer List SubReport
1 Place a SubReport component in the detail
band.

2 Position the subreport so that it is flush with the
top of the detail band.

3 Right-click over the subreport and select the
Section menu option.

Note: When a subreport is created, it defaults to a
PrintBehavior of pbChild. Child subreports print
within the context of the parent band, much like a
stretching memo. Section subreports generate
entire pages, creating a whole section within the
parent report.

4 Name the subreport srCustomerList.

Note: Whenever you set the name of a subreport,
the text in the subreport component and the text in
the tab at the bottom of the Report Designer is
updated. The caption is also displayed in the
Report Outline section of the Report Tree. When
you have several subreports, it is a good idea to
name them so it is easier to keep track of them.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

322 Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
5 Click the 'srCustomerList' tab.

6 Select File | Load SubReport from the Report
Designer main menu and open the CustList.rtm
file. The Customer List report will appear in the
Report Designer.

7 Click the Main tab at the bottom of the Report
Designer to return to the layout of the main report.

8 Select File | Save from the Delphi main menu.

Create the Stock Summary SubReport
1 Place a second SubReport component in the
detail band.

2 Position it so that the top is flush with the bot-
tom of the Customer List subreport.

Note: This step is not necessary: it just helps to
create a clean layout. The print order of the subre-
ports is not determined by their top to bottom order
within the band. Print order is actually determined
by the layering of the components (Send to Back/
Bring to Front order). The report at the back is
printed first; the report at the front is printed last.
You can quickly determine the layering of subre-
ports via the Report Tree. You can also use the
Report Tree to change the layering.

3 Right-click over the subreport and select the
Section menu option.

4 Name the subreport srStockSummary.

Note: We need to set the name of this subreport
because we will be referring to this component by
name in an event handler later in the tutorial.

5 Click the 'srStockSummary' tab.

6 Select File | Load SubReport from the Report
Designer main menu and open the StockSum.rtm
file. The Stock Summary report will appear in the
Report Designer. Ignore any messages here
regarding 'Invalid property values', as these are
related to the event handlers formerly assigned to
the report.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

323Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
7 Click the 'Main' tab at the bottom of the Report
Designer.

8 Select File | Save from the Delphi main menu.

Preview the Report at Run-Time
1 Close the Report Designer.

2 Select the Standard tab of the Delphi component
palette.

3 Add a Button component to the form.

4 Configure the Button component:

Name btnPreview
Caption Preview

5 Put the following code in the OnClick event
handler of the button:

rbSectSub.Print;

6 Select File | Save from the Delphi main menu.

7 Run the Project.

8 Click the Preview button. The report should be
displayed in the Print Preview form. The first three
pages should contain the Customer List report; the
last thirty-nine pages should contain the Stock
Summary report.

Note: The calculations for the Stock Summary
report are not correct, and the color-coding for this
report is gone. This is because we have not created
the event handlers for this report. We will com-
plete this task in the next section.

Copy the Event Handlers from the
Stock Summary Report
1 Re-open the form containing the Stock Sum-
mary report (rbStock.pas).

2 Locate the event handler declarations in the
form declaration at the top of the unit.

3 Copy the following event handler declarations
into your clipboard:

procedure ppGroupHeaderBand1BeforeGenerate;
procedure ppDetailBand1BeforeGenerate;
procedure vrBuyTotalCalc;
procedure vrHoldTotalCalc;
procedure vrSellTotalCalc;

4 Locate the form class declaration at the top of
the rbSectSR unit.

5 Paste the event handler declaration immediately
above the private section of the form class declara-
tion.

Note: You may have noticed that the Delphi Form
Designer automatically adds declarations to the
mysteriously unlabeled section at the top of your
form class declaration. This is actually the pub-
lished section of the form class. Declarations for
all of the event handlers and components within a
form are placed in the published section in order to
facilitate the streaming logic used to load and save
forms to dfm files. By pasting these declarations
into the published section of the form (and pasting
the corresponding implementations in the unit), we
make these event handlers assignable from the
Object Inspector.

324 Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
6 Return to the rbStock unit and copy the 'FRec-
ommendation' variable from the private section of
the form class declaration.

7 Return to the rbSectSR unit and paste this vari-
able into the private section of the form class decla-
ration.

8 Return to the rbStock unit.

9 Scroll down to the implementation section of
the unit and copy all of the event handlers, save the
TfrmStockSummary.btnPreviewClick event.

10 Return to the rbSectSR unit and paste the event
handlers in the implementation section of the unit.

11 Select File | Save from the Delphi main menu.

12 Return to the rbStock unit. Right-click over the
code editor and select Close Page to close this unit.

Re-attach the Event Handlers to the
Stock Summary Subreport
1 Scroll to the top of the rbSectSR unit, double-
click the class name TfrmSectionSubreports, and
copy it into the clipboard.

2 Scroll down to the implementation section and
Replace the existing classname (TfrmStockSum-
mary) for each event handler with the new class
name (TfrmSectionSubreports).

3 Double-click on the rbSectSub report compo-
nent to display the Report Designer.

4 Click on the srStockSummary tab at the bottom
of the Report Designer.

5 Click in the white space of the group header
band.

6 Select the Events tab of the Object Inspector.

7 Select the BeforeGenerate event, then expand
the drop-down list of event handlers and select this
routine:

ppGroupHeaderBand1BeforeGenerate

8 Select the AfterGenerate event to make sure the
assignment was successful.

9 Click in the white space of the detail band.

10 Select the BeforeGenerate event, then expand
the drop-down list of event handlers and select this
routine:

ppGroupHeaderBand1BeforeGenerate

11 Select the AfterGenerate event to make sure the
assignment was successful.

12 Click in the white space of the group header
band once again and double-click on the Before-
Generate event to activate the code editor. Change
the 'if' statement on the last line of the event han-
dler to refer to srStockSummay instead of rbStock-
Sum. The code should read:

if srStockSummary.Report.Groups[0].FirstPage
then

Note: The original event handler referred to the
rbStockSum report component. This event handler
has to be changed to refer to the Report component
within the srStock subreport. A subreport compo-
nent actually consists of two components: the sub-
report component and the report component
contained within it. The subreport component is
used to position the subreport within the parent
report and to set various properties

325Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
 related to print behavior. The report component is
accessible via the Report property and contains the
report itself. This component is no different than
the report component you work with on a Delphi
form.

13 Scroll down to the summary band and reconnect
the Variable components to their corresponding
OnCalc events:

Component Event
vrBuyTotal vrBuyTotalCalc
vrHoldTotal vrHoldTotalCalc
vrSellTotal vrSellTotalCalc

Note: This tutorial illustrates how to reconnect the
event handlers of the Stock Summary report so that
you will better understand the situation. If we had
copied these event handlers into the SectSub unit
before we loaded the Stock Summary report into
the subreport, the event handlers would be recon-
nected automatically by Delphi's object streaming
logic. (You may recall that an error message stat-
ing that the event handlers could not be found was
displayed when we loaded the report layout.) It is
important to know that event handlers are recon-
nected based on their procedure name. When you
want event handlers to reconnect automatically,
they must have the same names as those saved in
the report layout.

14 Select File | Save from the Delphi main menu.

15 Run the Project. The Stock Summary report
should now be color-coded and the totals should
calculate properly.

Add a Title Page to the Report
1 Double-click on the rbSectSub report compo-
nent to display the Report Designer.

2 Click the 'Main' tab.

3 Select Report | Title from the Report Designer
main menu. A title band will be created.

4 Right-click over the title band and select the
Position... menu option.

5 Set the height to 5.8125.

Begin Laying Out the Title Band
1 Place a label component in the upper left corner
of the title band.

2 Configure the label:

Caption Title Page
Font Name Times New Roman
Font Size 12
Font Style Bold
Font Color Black
Text Alignment Left

3 Place a label component near the middle of the
title band.

4 Configure the label:

Caption Marine Adventures &
Sunken Treasures Co.

Font Name Times New Roman
Font Size 20
Font Style Bold & Italic
Text Alignment Center
Left 1.3542
Top 1.9166

326 Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
5 Place a label component just below the previous
label.

6 Configure the label:

Caption Annual Report for
1997

Font Name Times New Roman
Font Size 20
Font Style Bold & Italic
Text Alignment Center
Left 2.5729
Top 2.3021

7 Place a label component just below the previous
label.

8 Configure the label:

Caption Prepared By
Font Name Times New Roman
Font Size 14
Font Style Bold & Italic
Text Alignment Center
Left 3.4896
Top 2.75

9 Place a label component just below the previous
label.

10 Configure the label:

Caption Arthur Andreesen &
Co.

Font Name Times New Roman
Font Size 14
Font Style Bold & Italic
Text Alignment Center
Left 2.9896
Top 3.0416

Complete the Title Band Layout
1 Place a label component just below the previous
label.

2 Configure the label:

Caption Table of Contents
Font Name Times New Roman
Font Size 20
Font Style Bold & Italic
Text Alignment Center
Left 2.9375
Top 3.8646

3 Place a label component just below the previous
label.

la
yo

ut
 c

he
ck

327Hooking Reports Together with Section-Style Subreports

REPORT TUTORIALS
4 Configure the label:

Caption Section 1.....Customer
Font Name Times New Roman
Font Size 14
Font Style Bold
Text Alignment Center
Left 2.9375
Top 4.3646

5 Place a label component just below the previous
label.

6 Configure the label:

Caption Section 2.....Stock
Font Name Times New Roman
Font Size 14
Font Style Bold
Text Alignment Center
Left 2.9375
Top 4.6875

7 Select Project | Compile rbSSProj. Fix any
compilation problems.

8 Select File | Save from the Delphi main menu.

9 Run the Project. The first page of each section
should look like the following:

Title Page

First Page of the Customer List Report

First Page of the Stock Summary Report

la
yo

ut
 c

he
ck

329Using Columns to Create Mailing Labels

REPORT TUTORIALS
Using Columns to Create Mailing Labels

Overview
This tutorial will show you how to do the follow-
ing:

• Configure a report to print mailing labels

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmMailingLabels'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbMailL in the My
RB Tutorials directory (established on page 181).

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
option.

6 Save the project under the name rbMLProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

330 Using Columns to Create Mailing Labels

REPORT TUTORIALS
Invoke the Report Designer and Config-
ure the Page Layout
1 Select the RBuilder tab of the Delphi compo-
nent palette.

2 Place a report component on the form.

3 Double-click on the Report component to dis-
play the Report Designer.

4 Size and move the Report Designer window so
that the Object Inspector is visible.

5 Select File | Page Setup from the Report
Designer main menu.

6 Select the Layout tab. Enter the following val-
ues:

Columns 4
Column Width 1.75
Column Position 1 0.28
Column Position 2 2.34
Column Position 3 4.4
Column Position 4 6.46

7 Select the Margins tab. Enter the following val-
ues:

Top 0.4
Bottom 0.49
Left 0.2969
Right 0.2969

8 Click the OK button to close the dialog.

Configure the Report
1 Click the Select Report icon at the upper left
corner of the Report Designer workspace.

2 Set the PageLimit to 1 and the AutoStop prop-
erty to False in the Object Inspector.

Note: This report is not connected to any data, so it
has no basis on which to stop generating pages. In
this situation, the AutoStop property defaults to
True so that the report will print only one detail
band. Because we want to fill a single page with
detail bands, we turn AutoStop off and set the
PageLimit to one.

3 Select Report | Header from the Report
Designer main menu. The header band will be
removed from the report.

4 Select Report | Footer from the Report Designer
main menu. The footer band will be removed from
the report.

5 Place a shape in the detail band.

6 Configure the shape:

ParentHeight True
ParentWidth True

7 Select File | Save from the Delphi main menu.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

331Using Columns to Create Mailing Labels

REPORT TUTORIALS
8 Preview the report. You should see four col-
umns of shapes. Print this page to the printer.

The labels should look like this when you preview:

9 Take the sheet just printed and place it behind
an Avery 5267 Laser label sheet. Hold the sheets
up to a bright light so you can see exactly where
the lines fall on the labels. Ideally, the edges of the
lines should match up with the edges of the labels.

Note: By placing a shape in the detail band, we
can see exactly where the label information will
print. If the shape does not match up with the
labels, we can make adjustments to the margins,
column positions, and row spacing of the detail

 band. It is fairly common for the alignment shape
to be off a little, even though the exact measure-
ments are sent to the printer. This is usually due to
variation in the label sheets and to the calibration
of the printer being used. Generally, you must
tweak the report layout until the alignment shape
appears in the correct location, then set the Visible
property of the shape to False and use the template
like any other report.

Create Mailing Labels Via the Label
Template Wizard
1 Place another report component on the form and
double-click on it to display the designer.

2 Select File | New from the main menu of the
designer.

3 Double-click on the Label Templates icon.

4 Make the following selections:

Products Avery Standard
5267 - Return Address

5 Place a shape in the detail band.

6 Set the ParentHeight and ParentWidth of the
shape to True.

7 Click the Select Report icon and use the Object
Inspector to set AutoStop to False and PageLimit
to 1.

332 Using Columns to Create Mailing Labels

REPORT TUTORIALS
8 Select File | Save from the Delphi main menu.

9 Preview.

The labels should look like this:

333Printing to a Text File

REPORT TUTORIALS
Printing to a Text File

Overview
This tutorial will show you how to do the follow-
ing:

• Print a report to an ASCII data file

Create a New Application
Note: This tutorial builds upon the 'Creating a
Report via the Report Wizard' tutorial. You can
either complete this tutorial or use the rbViaWiz
form located in the RBuilder\Tutorials directory.

1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Close the new form and unit without saving.

3 Select File | Open from the Delphi main menu.
Locate the rbViaWiz unit in the Tutorials directory
and open it.

4 Set the Form name to 'frmPrintToTextFile'.

5 Select File | Save As from the Delphi menu and
save the form under the name rbToTxt in the My
RB Tutorials directory (established on page 181).

Note: It is important to name the form and save the
form's unit using the names given above because
the form will be used in later tutorials.

6 Select View | Project Manager from the Delphi
main menu.

7 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Add
menu option.

8 Add rbToTxt to the project.

9 Right-click over the project name once again
and select the Save menu option.

10 Save the project under the name rbTTProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Complete the Report Wizard Tutorial
1 Rename the Report component rbPrintData.

2 Delete the Preview button from the form.

Load the Tabular Style Report Template
1 Double-click on the Report component to dis-
play the Report Designer.

2 Select File | Open from the Report Designer
main menu.

3 Open the CustTab.rtm file.

334 Printing to a Text File

REPORT TUTORIALS
Assign User Names to the DBText
Components
1 Set the UserName for each of the DBText com-
ponents based on the field to which they are
assigned. Use the Object Inspector to assign the
following UserNames:

dbtCompany
dbtCustNo
dbtContact
dbtPhone
dbtFax
dbtCity
dbtState
dbtCountry

Specify the File Name and Format
1 Select File | Print to File Setup from the Report
Designer main menu. The Print to File Setup dia-
log will be displayed.

2 Click the File button.

3 Access the My RB Tutorials directory and enter
customer as the file name. Click the Save button to
close the file dialog.

4 Select Tab Delimited from the File Type drop-
down list.

5 Select the detail band in the Bands list. The
Available Controls list will display the components
residing in the detail band.

6 Use the arrows to the right of the Available
Controls list box to move each of the DBtext com-
ponents to the Selected Controls list box in the fol-
lowing order:

Company
CustNo
Contact
Phone
Fax
City
State
Country

7 Click the OK button to close the dialog.

Configure the Report to Print to File
1 Click the Select Report icon located at the upper
left corner of the Report Designer workspace
where the horizontal and vertical rulers meet.

2 Set the Report's AllowPrintToFile property to
True in the Object Inspector.

3 Set the Report's DeviceType to TextFile.

4 Select File | Save As from the Report Designer
menu and save the modifications to CustTab.rtm.

Soft Code the Template Name
1 Close the Report Designer.

2 Access the Delphi Code Editor.

3 Search the unit for all occurrences of 'rbCusto-
merList' and change them to 'rbPrintData.'

335Printing to a Text File

REPORT TUTORIALS
Soft Code the Text File Name
1 Access the OnClick event for the Print button
and change the event handler so that it looks like
the code below.

2 Select Project | Compile rbTTProj. Fix any
compilation problems.

3 Select File | Save from the Delphi main menu.

Print the Report to File
1 Run the project.

2 Click the Print button. Notice that the Print to
File option is selected.

3 Click OK to print to the file.

4 Close the form and return to the Delphi design
environment.

5 Select File | Open from the Delphi main menu
and set the files of type to txt. Open the Cus-
tomer.txt file. The file should contain 55 tab-
deliminated records.

6 Run the project again.

7 Select the Vertical style report and click the
Print Button. Notice that there are not any Print to
File options in the dialog.

8 Close the dialog and the form.

The print dialog should look like this:

Tabular Report Print Dialog with Print to File Option

Vertical Report Print Dialog without Print to File Option

Code Event handler for BuildEmployeeAddress procedure

procedure TfrmPrintToTextFile.btnPrintClick(Sender: TObject);
begin
 {load the template file and print to printer}

rbPrintData.Template.LoadFromFile;

if rbTabular.Checked then
begin
rbPrintData.AllowPrintToFile := True;
rbPrintData.TextFileName := FPathName + 'Customer.txt';

rbPrintData.DeviceType := dtTextFile;
end

else
begin
rbPrintData.AllowPrintToFile := False;
rbPrintData.TextFileName := '';

rbPrintData.DeviceType := dtPrinter;
end;

rbPrintData.Print;
end;

337Printing from a Text File

REPORT TUTORIALS
Printing from a Text File

Overview
This tutorial will show you how to do the follow-
ing:

• Print a report from data stored in a text file

Create a New Application
Note: This tutorial uses the Customer.txt file cre-
ated in the previous tutorial. You can either com-
plete this tutorial or use the Customer.txt file
located in the RBuilder\Tutorials directory.

1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmPrintFromTextFile'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbFrmTxt in the My
RB Tutorials directory.

Note: It is important to name the form and save the
form's unit using the names given above because
the report will be used in later tutorials.

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbFTProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Create the Text DataPipeline Component
1 Select the RBuilder tab of the Delphi compo-
nent palette.

2 Place a TextPipeline component on the form.

3 Configure the TextPipeline component:

FileName Customer.txt
FileType ftTab
Name plCustomer

Define the Data Fields for the Text
Pipeline
1 Double-click on the TextPipeline component to
display the Fields Editor.

2 Add a new field by clicking the Add button.

3 Set the following properties for the field:

FieldName Company
FieldLength 30

338 Printing from a Text File

REPORT TUTORIALS
Note: The TextPipeline enables ReportBuilder to
use data from a text file as if it were stored in a
database. The field lengths specified here are max-
imum lengths. For example, the actual company
names stored in the file may vary in length, but
none may exceed 30 characters.

4 Add the following fields:

FieldName FieldLength
CustNo 10
Contact 20
Phone 15
FAX 15
City 15
State 20
Country 20

5 Close the Fields Editor.

6 Select File | Save from the Delphi main menu.

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plCustomer
Name rbCustomerList

Test the Data Connection
1 Double-click on the Report component to dis-
play the Report Designer.

2 Place a DBText component in the detail band
and set it to AutoSize.

3 Use the two drop down lists at the upper left
corner of the Report Designer to set the DataPipe-
line and DataField properties:

DataPipeline plCustomer
DataField Company

Note: The report and Report Designer behave in
the same manner whether the report is connected to
a DBPipeline, a TextPipeline, or any other type of
pipeline, including a custom data pipeline descen-
dant that you or another developer has created.

4 Preview the report. The Company field should
be listed.

5 Select the Design tab to return to the design
workspace.

Load the Vertical Style Report Template
1 Select the File | Open... from the Report
Designer main menu.

2 Open the CustVert.rtm file.

Note: The CustVert.rtm file was created in the
Report Wizard tutorial. The report was connected
to a DBPipeline named plCustomer. We now have
a text pipeline named plCustomer whose fields we
have defined with the same names as the fields
used from the Customer.db table. When the
CustVert.rtm report is loaded, the data is automati-
cally reconnected because the pipeline and field
names are identical.

3 Select File | Save from the Delphi main menu.

4 Select the Preview tab to view the report.

5 Select the Design tab to return to design mode.

339Printing from a Text File

REPORT TUTORIALS
Soft Code the Text File Name
1 Add the following code to the OnCreate event
of the form:

procedure
frmPrintFromTextFile.FormCreate(Sender:
TObject);

begin
plCustomer.FileName :=
ExtractFilePath(ParamStr(0)) +
'Customer.txt';

end;

Note: This code will allow you to deploy the appli-
cation without worrying about which directory the
customer.txt file is in. This code assumes that the
file is located in the same directory as the applica-
tion.

Preview the Report at Run-Time
1 Select the Standard tab of the Delphi component
palette.

2 Add a Button component to the form.

3 Configure the Button component:

Name btnPreview
Caption Preview

4 Add the following code to the OnClick event
handler of the button:

rbCustomerList.Print;

5 Select Project | Compile rbFTProj. Fix any
compilation problems.

6 Select File | Save from the Delphi main menu.

7 Run the project.

8 Click on the Preview button. The report should
be displayed in the Print Preview form:

341Using the JITPipeline to Print from a StringGrid

REPORT TUTORIALS
Using the JITPipeline to Print from a StringGrid

Overview
This tutorial will show you how to do the follow-
ing:

• Print a report from data stored in a string grid or
string list

Create a New Application
Note: This tutorial builds upon the Printing from a
Text File tutorial. You can either complete the
Print from Text File tutorial or use the rbFrmTxt
form in the RBuilder\Tutorials directory.

1 Select File | New Application from the Delphi
menu. This will create a new project and blank
form.

2 Close the blank form and its associated unit
without saving.

3 Select File | Open from the Delphi main menu.
Open the rbFrmTxt unit in the Tutorials directory.

4 Set the form name to 'frmPrintFromStringGrid'.

5 Select File | Save As from the Delphi menu and
save the form under the name rbFrmJIT in the My
RB Tutorials directory.

6 Select View | Project Manager from the main
menu.

7 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Add
menu option.

8 Add rbFrmJIT to the project.

9 Right-click over the project name in the Project
Manager and select the Save menu option.

342 Using the JITPipeline to Print from a StringGrid

REPORT TUTORIALS
10 Save the project under the name rbFJProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Rename the TextPipeline
1 Rename the TextPipeline plCustomerTxt.

Note: For this example, the text pipeline will be
used to load the data from the customer.txt file into
a string grid. A JITPipeline will then pull the data
from the string grid and provide it to the report.

Create a StringGrid
1 Select the Additional tab of the Delphi compo-
nent palette and add a StringGrid to the form.

2 Configure the StringGrid:

Left 5
Top 5
Width 500
Height 250
Name grCustomer

3 Double-click on the Options property in the
Object Inspector to expand the options list. Set
goColSizing and goRowSelect to True.

Add Code to Load the StringGrid
1 Add the following procedure declaration to the
bottom of the interface section for the unit (just
below the end of the form class declaration and just
above the var declaration).

procedure PipeDataToGrid(aPipeline:
TppDataPipeline; aGrid: TStringGrid);

2 Copy the PipeDataToGrid routine from form
dm0139 in the RBuilder\Demos\1. Reports direc-
tory.

3 Paste the code at the bottom of the implementa-
tion section of the rbFrmJIT unit.

Note: This procedure is written in a generic man-
ner so that it can be reused as needed. You pass the
procedure a data pipeline (TextPipeline, JITPipe-
line, DBPipeline, etc) and a string grid. The proce-
dure loads all of the data from the pipeline into the
string grid. You can store routines such as this one
in a common unit when building an application.
You can then add this common unit to the uses
clause of other units where the utility routines are
needed. In this way you can avoid repeating the
same routine in several units.

Note: This procedure populates a string grid with
pipeline data. The data pipeline is opened and all
the data is traversed to count the total number of
records. The row size of the grid is set to the num-
ber of rows + 1 because the field names are to be
stored in the first row (i.e. row 0). The column size
of the grid is likewise set to the number of fields +
1 because the first column contains the border for
the grid. Next, the field names are loaded into the
first row. Finally, the pipeline data is traversed
once again and the data is loaded to the grid cells.

4 Change plCustomer to plCustomerTxt in the
OnCreate event handler of the form:

plCustomerTxt.FileName :=
ExtractFilePath(ParamStr(0)) + 'Customer.txt';
PipeDataToGrid(plCustomerTxt, grCustomer);

343Using the JITPipeline to Print from a StringGrid

REPORT TUTORIALS
Note: This code assigns the text file name (assum-
ing the text file is in the same directory as the
application) and populates the string grid with data.

5 Select Project | Compile rbFJProj. Fix any com-
pilation problems.

6 Select File | Save from the Delphi main menu.

7 Run the project. The customer data should be
displayed in the grid.

Create the JIT DataPipeline Component
1 Select the RBuilder tab of the Delphi compo-
nent palette.

2 Add a JITPipeline component to the form.
Set the Name property to plCustomer.

3 Set the report component's DataPipeline prop-
erty to plCustomer.

Define the Data Fields for the JITPipeline
1 Double-click on the JITPipeline component to
display the Field Editor.

2 Click the Add button to add a new field.

3 Use the Object Inspector to set the following
properties for the field:

FieldName Company
FieldLength 30

Note: The JITPipeline enables ReportBuilder to
access data as if it were stored in a database. The
field lengths specified here are maximum lengths.

4 Repeat steps 2 and 3 to add the following fields:

FieldName FieldLength
CustNo 10
Contact 20
Phone 15
FAX 15
City 15
State 20
Country 20

5 Close the Field Editor.

6 Select the form and add the following code to
the OnCreate event (below the call to 'PipeDataTo-
Grid'):

plCustomer.InitialIndex := 1;
plCustomer.RecordCount:=grCustomer.RowCount-1;

7 Select File | Save from the Delphi main menu.

Add a Function to Return the Grid Field
Values
1 Copy the GetGridFieldValue function declara-
tion from form 0139 in the RB\Demos\1. Reports
directory.

2 Paste it directly above the PipeDataToGrid dec-
laration.

3 Access form 0139 and copy the GetGridField-
Value routine.

4 Paste the code at the bottom of the implementa-
tion section of the rbFrmJIT unit.

344 Using the JITPipeline to Print from a StringGrid

REPORT TUTORIALS
Note: This routine returns the data field value for
the current record. The field names are stored in
the first row of the grid and are used to determine
the column number of the given field name. This
column number and current row index are used to
retrieve the current field value.

Add JITPipeline Event Handlers to
Return the Field Values
1 Toggle back to the form and select the plCus-
tomer JIT data pipeline, then click the Events tab
on the Object Inspector.

2 Create the following event handler for the
OnGetFieldValue:

Result := GetGridFieldValue (grCustomer,
 plCustomer.RecordIndex, aFieldName,
 plCustomer.GetFieldDataType(aFieldName));

Note: The event handler above simply calls the
GetGridFieldValue routine and passes the
requested field name.

3 Select Project | Compile rbFJProj. You should
get an error relating to TppDataType in the Get-
GridFieldValue event handler.

4 Add 'ppTypes' to the 'uses' clause at the top of
the unit.

5 Compile and select File | Save from the Delphi
main menu.

6 Select the report component and set the Device-
Type to 'Screen'.

7 Run the project.

8 Click on the Preview button.

345Using the Rich Text Component for Mail/Merge

REPORT TUTORIALS
Using the Rich Text Component for Mail/Merge

Overview
This tutorial will show you how to do the follow-
ing:

• Generate a form letter with address information
from a database

• Edit the standard Rich Text component

• Use the mail/merge feature

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmMailMerge'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbMailM in the My
RB Tutorials directory.

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbMMProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Create a Table, DataSource, and
DataPipeline Component
1 Select the Data Access tab of the Delphi compo-
nent palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblClient
TableName clients.dbf

346 Using the Rich Text Component for Mail/Merge

REPORT TUTORIALS
4 Add a DataSource component to the form.

5 Configure the DataSource component:

DataSet tblClient
Name dsClient

6 Select the RBuilder tab of the Delphi compo-
nent palette.

7 Add a DBPipeline component to the form.

8 Configure the DBPipeline component:

DataSource dsClient
Name plClient

Create a Report and Connect it to the
Data

1 Add a Report component to the form.

2 Configure the Report component:

DataPipeline plClient
Name rbMailMerge

Invoke the Report Designer and Set the
Page Layout
1 Double-click on the Report component to dis-
play the Report Designer.

2 Size and move the Report Designer window so
that the Object Inspector is visible.

3 Select File | Page Setup from the Report
Designer main menu.

4 Select the Margins tab.

5 Set all margins to 1.25.

6 Click the OK button to close the dialog.

Modify the Bands
1 Select Report | Header from the Report
Designer main menu. The header band will be
removed from the report.

2 Select the Report | Footer option from the main
menu. The footer band will be removed from the
report.

3 Right-click over the white space of the detail
band and select Position. Set the PrintCount to 1
and the Height to 4. This will allow only one detail
band to print per page, thus creating the effect of
one form letter per page.

4 Place a RichText component in the detail band.

5 Right-click over the RichText component and
select the Stretch menu option. This will force the
RichText component to resize based on the size of
the letter.

6 Right-click over the RichText component and
set the position and size:

Left 0
Top 0
Width 6
Height 4

Note: We've positioned the RichText control so
that it fills the entire detail band. This allows us to
use the margins of the report to control the posi-
tioning of the letter, as opposed to positioning the
RichText component within the band. The height
of 4 is arbitrary: it will simply allow us to read the

347Using the Rich Text Component for Mail/Merge

REPORT TUTORIALS
entire contents of the letter while designing. When
the report prints, the RichText component will cal-
culate its height based on the length of the letter.

Load MMLetter into the RichText
Component
1 Right-click over the RichText component and
select the MailMerge menu option.

2 Right-click over the RichText component and
access the Edit menu option. The Rich Text Editor
will be displayed.

3 Select File | Open from the Rich Text Editor
menu.

4 Locate the MMLetter.RTF file in the
RBuilder\Tutorials directory. Open this file.

Add Fields to the Letter
1 Select Edit | Insert Field. A list of fields from
the client table will be displayed.

2 Select the FIRST_NAME field and click OK.

3 Type a space and then insert the LAST_NAME
field.

4 Press Enter to start a new line.

5 Insert the ADDRESS_1 line.

6 Press Enter to start a new line.

7 Insert the CITY field. Type a comma and a
space.

8 Insert the STATE field.

9 Type a space and then insert the ZIP field.

10 Press enter twice to create a blank line below the
address fields.

11 Type 'Dear', then a space, then insert the
FIRST_NAME field.

12 Type a comma and press Enter twice.

13 Locate the start of the second paragraph (starts
with the words 'We would like...').

14 Change this to '<FIRST_NAME>, we would
like...'

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

348 Using the Rich Text Component for Mail/Merge

REPORT TUTORIALS
15 Close the Rich Text Editor. Click the Yes but-
ton when the Save Changes dialog appears.

16 Select File | Save from the Delphi main menu.

17 Preview the report. The data from the clients
table should be displayed.

Preview the Report at Run-Time
1 Close the Report Designer.

2 Select the Standard tab of the Delphi component
palette.

3 Add a Button component to the form.

4 Configure the Button component:

Name btnPreview
Caption Preview

5 Add the following code to the OnClick event
handler of the button:

rbMailMerge.Print;

6 Select File | Save from the Delphi main menu.

7 Select Project | Compile rbMMProj. Fix any
compilation problems.

8 Run the Project.

9 Click the Preview button. The report should be
five pages, with one letter per page.

349Creating a Crosstab

REPORT TUTORIALS
Creating a Crosstab

Overview
This tutorial will show you how to do the follow-
ing:

• Summarize data in a grid format

• Create a crosstab report

Create a New Application
Note: The crosstab component is available in the
Professional and Enterprise editions only.

1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmSaleCross'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbCross in the My
RB Tutorials directory.

4 Select View | Project Manager from the main
menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbCrossProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Create a Query, DataSource, and
DataPipeline Component
1 Select the BDE tab of the Delphi component
palette.

2 Add a Query component to the form.

350 Creating a Crosstab

REPORT TUTORIALS
3 Configure the Query component:

DatabaseName DBDEMOS
Name qryOrder
SQL
SELECTAmountPaid, State,
EXTRACT (MONTH FROM SaleDate) AS

SaleMonth
FROM Customer, Orders
WHERE Orders.CustNo = Customer.CustNo

4 Double-click on the Active property in the
Object Inspector to set it to True.

5 Add a DataSource component to the form.

6 Configure the DataSource component:

DataSet qryOrder
Name dsOrder

7 Select the RBuilder tab of the Delphi compo-
nent palette.

8 Add a DBPipeline component to the form.

9 Configure the DBPipeline component:

DataSource dsOrder
Name plOrder

Create a Report

1 Add a Report component to the form.

2 Configure the Report component:

Name rbOrder

3 Double-click on the Report component to dis-
play the Report Designer.

4 Position the Report Designer so that the Object
Inspector is also visible.

5 Place a crosstab component (from the
Advanced toolbar) in the detail band.

6 Use the Edit toolbar to assign the crosstab to the
plOrder data pipeline.

7 Select File | Page Setup. Access the Paper Size
and set the orientation to Landscape. Click OK.

8 Right-click over the crosstab and select Config-
ure. The Crosstab Designer will be displayed.

9 Select the SaleMonth field (at the bottom of the
list) and drag it over the new row cell. Black, trian-
gular indicators should show where the new cell
will be created.

10 When these indicators appear to the left of the
new row cell, release the mouse button.

11 Click OK.

12 Select File | Save from the Dephi main menu.

13 Preview. A blank page is displayed because no
Value dimensions have been created for the
crosstab.

351Creating a Crosstab

REPORT TUTORIALS
Design the Crosstab
1 Return to the design workspace, right-click over
the crosstab, and select Configure.

2 Drag the Amount Paid field over the new value
cell. When the indicators appear, release the
mouse button.

Note: The number 1000 represents the format of
the calculated value. The Grand Total indicates
that the last row of the crosstab will show the total
Amount Paid for all months.

Add Additional Values to the Crosstab
1 Drag the Amount Paid field over the new value
cell and release it.

2 Select the second Sum of Amount Paid value.

3 Locate the drop-down list box on the toolbar.

4 Select Average from the drop-down list.

5 Once again, drag the Amount Paid field over the
new value cell and release it.

6 Select the second Sum of Amount Paid (the one
below the average).

7 Select Count from the drop-down list.

8 Click OK.

9 Select File | Save from the Delphi main menu.

10 Preview. The crosstab includes new values.
Advance to the second page. The grand totals are
on this page. The report tells us the sum, average,
and count for the Amount Paid per month.

Set the Format of the Values
1 Access the Crosstab Designer.

2 Select the 1000 under Sum of Amount Paid.

3 Right-click and select Display Format. Select
the first menu option with a dollar sign.

4 Select the 1000 under Average Amount Paid.

5 Right-click and select Display Format. Select
the first menu option with a dollar sign.

di
ag

ra
m

 c
he

ck

di
ag

ra
m

 c
he

ck

352 Creating a Crosstab

REPORT TUTORIALS
Calculate Totals by State
1 Move the SaleMonth cell over the new column
cell and release.

2 Drag State from the field list, place it over the
new row cell, and release.

3 Click OK.

4 Select File | Save from the Delphi main menu.

5 Preview. Select Whole Page on the preview
toolbar. The crosstab shows us the sum, average,
and count of the Amount Paid per month for each
state. Notice that the months go across the top of
the report instead of down the side. This is because
SaleMonth is now a column dimension.

Lay Out the Header Band
1 Return to the design workspace and place a
label in the upper left corner of the header band.

2 Set the caption to Monthly Sales by State.

3 Configure the label:

Font Name Arial
Font Size 12
Font Style Bold
Font Color Black

4 Place a SystemVariable in the lower left corner
of the footer band.

5 Set it to PrintDateTime.

6 Place another SystemVariable in the lower right
corner of the footer band.

7 Set it to PageSetDesc.

8 Align the top of the SystemVariables.

9 Configure the SystemVariables:

Font Name Arial
Font Size 8
Font Style Regular
Font Color Black

10 Select File | Save from the Delphi main menu.

11 Preview. Notice that the page number prints on
each page.

Set Pagination
1 Right-click over the crosstab component and
select Pagination. Notice that the default setting is
Down then Across.

2 Select Across then Down.

3 Preview. The pages print across then down.

Use Repeated Captions
1 Right-click over the crosstab component.

2 Expand the Style menu option. Notice that the
default setting is Standard.

3 Select Repeated Captions.

4 Preview and print all four pages of the crosstab.
Notice how the repeating captions clarify the con-
text of the crosstab.

di
ag

ra
m

 c
he

ck

RAP TUTORIALS

RAP TUTORIALS

Concatenating Fields 359

Color-Coding Components 363

Dynamic Duplexing 367

Adding New Functions to RAP 371

Extending the RAP RTTI 377

Printing a Description of AutoSearch Criteria 387

Displaying Delphi Forms From RAP 391

355Concatenating Fields

RAP TUTORIALS
RAP TUTORIALS

Concatenating Fields

Overview
This tutorial will show you how to do the follow-
ing:

• Create a basic report at design-time

• Create a report that concatenates two fields using
RAP instead of Delphi event handlers.

Create a Tutorial Folder
1 Access the Windows Explorer.

2 Create a folder on the root of your hard drive.

3 Name the folder My RAP Tutorials.

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a new
form.

2 From the RBuilder tab on the Component Pal-

ette, select a Report component and drop it on
the blank form.

3 Right-click the component and select Report
Designer from the context menu.

Create a DataView
1 In the open Report Designer, click the Data tab.

2 Select File | New from the menu. The New
Items dialog will appear.

3 Double-click the Query Wizard to begin creat-
ing a dataview. From the list of available tables,
double click the Clients table.

4 Select Next on all of the following pages until
you reach the last page, then click Finish.

356 Concatenating Fields

RAP TUTORIALS
Layout the Report
1 Click the Design tab and turn off the report’s
header and footer bands by selecting those items in
the Report menu.

2 Add two DBText controls to the Detail

band.

3 Click on DBText1 and use the Data Field drop
down list to select First Name.

4 Click on DBText2 and use the Data Field drop
down list to select Last Name. If you preview the
report now, you should see five detail records with
first and last names displayed.

5 Place one Variable component to the right
of the DBText components in the detail band. The
Variable will display the concatenated fields.

6 Select all of the components by shift-clicking,

and select the Align Top icon on the Align or
Space Toolbar.

Navigate the Calc Workspace
We will use the OnCalc event of the Variable to
concatenate the two fields.

1 Click the Calc tab to display the Calc Work-
space.

2 Right-click the Code Explorer’s tree view and
select Events.

3 Click Variable1.

4 Right-click the OnCalc event and select New.

la
yo

ut
 c

he
ck

la
yo

ut
 c

he
ck

357Concatenating Fields

RAP TUTORIALS
Add the Concatenation Code
The Data tab of the Code Toolbox should be
active, if it is not, select it. In the upper window of
the Code Toolbox, you should see the pipeline we
have added, plClients. Below that, you should see
an entry for each field in the pipeline. These items
are draggable.

We’re going to enter the following line of code, but
we are going to construct it via drag and drop.

1 Click on the First Name entry in the Toolbox
and drag it to the Code Editor, just to the right of
the "Value := " line.

2 Drag the Last Name entry to the right of the line
of code.

3 Type in the remaining characters of the line as
shown below.

Code Variable1 OnCalc Event

procedure Variable1OnCalc(var Value: Variant);
begin

 Value := Clients['First Name'] + ' ' + Clients['Last Name'];

end;

358 Concatenating Fields

RAP TUTORIALS
Compile and Preview
1 To compile your code, right-click on the Code
Editor and select Compile.

2 To view the results, click the Preview tab.

Congratulations--you’ve successfully concatenated
database fields using RAP!

Save the Report
1 Click on the Design tab and select Save As from
the File menu.

2 Navigate to the My RAP Tutorials folder and
save the report as RAP Tutor 1.rtm.

Note that the RAP Code, the DataView, and the
report layout have all been saved together.

Load the Report

1 Select New Report from the File menu.

2 Go back to the File menu and open the report
you just saved.

If you preview the report, you will see that the
RAP code is executing and you did not have to
reconnect any event handlers.

359Color-Coding Components

RAP TUTORIALS
Color-Coding Components

Overview
This tutorial will show you how to do the follow-
ing:

• Use RAP at run-time

• Add local variables

• Add event handler code to color-code a compo-
nent.

Open the Demo Project
1 Select File | Open | RBuilder | Demos |
3. EndUser | 1. Report Explorer | EndUser.dpr

2 Enable RAP by removing the “x” from in front
of $DEFINE RAP in the MyEurpt.pas interface.

3 Compile and run the demo project.

4 Select the Customers folder.

5 Double-click the Customer List to open it.

Enable DetailBeforePrint
1 Click the Calc tab to activate the Calc work-
space.

2 Right-click the left-hand pane tree view in the
Code Explorer and select Events.

3 Scroll through the Report Tree until you find the
Detail band and select it.

4 Right-click the BeforePrint event in the right-
hand pane and select New.

360 Color-Coding Components

RAP TUTORIALS
Add Local Variables
1 Just as you would in Delphi, place your cursor
just before the begin and add the local variables.

2 Place your cursor between the begin and end
and enter the code for the event handler as shown
below.

Code Detail BeforePrint Event

procedure DetailBeforePrint;
var
 lsString: String;
 liLength: Integer;

begin

 lsString := plCustomer[‘Company’];
 liLength := Length(lsString);
 Delete(lsString, 2, liLength -1);

 if lsString = ‘A’ then
 ppCustomerListDBText2.Color := clAqua

 else
 ppCustomerListDBText2.Color := clWhite;

end;

361Color-Coding Components

RAP TUTORIALS
Preview and Save
1 Click the Preview tab to view the report. You
should see some of the company names highlighted
in aqua.

It is possible to save your code as a separate entity
from your report by exporting it. You can also
import saved code.

1 Click the Calc tab and select the File menu.

2 Select Export, and give your code a name.

3 Close the Report Designer. You should see your
code in the folder where you saved it.

363Dynamic Duplexing

RAP TUTORIALS
Dynamic Duplexing

Overview
This tutorial will show you how to do the follow-
ing:

• Use duplexing to print a disclaimer on the back
of every page of a report.

• Print the data only on even numbered pages and
the disclaimer on the odd numbered pages.

Enable RAP
1 Select File | Open | RBuilder | Demos |
3. EndUser | 1. Report Explorer | EndUser.dpr.

2 Enable RAP by removing the “x” in front of
$DEFINE in the MyEUrpt.pas interface.

3 Build and run the demo project.

4 Navigate to the folder of your choice and click
the New Report button. The Report Designer will
open automatically.

Create a New DataView
1 Click the Data tab.

2 Select File | New, and choose the Query Wizard
from the New Items dialog box.

3 On the first page of the Wizard add Customer to
the Selected Tables list.

4 Add Orders to the Selected Tables list. This
should cause the Join Table dialog to appear.

5 Click on the TaxRate row in the Joined Fields
list box and click the Remove button.

6 Click OK to join the tables.

7 Accept the defaults on all the rest of the pages
and click Finish to create the DataView.

8 Close the preview when it appears.

364 Dynamic Duplexing

RAP TUTORIALS
Create Report Layout
1 Click the Design tab to begin laying out the
report.

2 Turn off the Header and Footer bands by select-
ing those items in the Report Menu.

3 Select Report | Groups to display the Groups
dialog.

4 Select Customer.CustNo from the Groups drop
down list and click Add to create the group.

5 Make sure the Reprint Group Headers on Subse-
quent Pages option is checked and click OK to cre-
ate the group.

6 Right-click the band divider labelled ^Group
Header[0]: CustNo and select Position from the
context menu.

7 We need to make the Group Header take up the
entire physical page, so assuming that Report.Units
is set to Inches and your margins are set to .25”
each, set Height to 10.5” and click OK.

8 Place a Memo in the Group Header band to
contain your disclaimer.

9 Right-click the memo and select Lines.

10 Edit the memo control and add some official
sounding text.

Note: The group header and memo control will be
printing on the back of every page.

11 Next, place two DBText controls in the
detail band and attach one to the Company field
and one to the OrderNo field.

Note: The group header will work for every page
but the last one. Since the data will always end on
an odd numbered page, we’ll need to arrange
something to print the disclaimer on the back of the
last page.

12 Position the Company DBText component:

Left 0.0313
Top 0.0208

13 Position the OrderNo DBText component:

Left 0.0313
Top 0.2083

14 Right-click the DBText components and select
AutoSize.

15 Select the Summary item from the Report menu
to turn on the Summary band.

16 Just as you did for the group header band, set
the height of the summary band to 10.5”.

17 Copy the Memo control from the group header
to the summary band and place it in the same posi-
tion in the band.

18 Click the Calc tab.

19 Right-click on the Code Explorer’s treeview and
select Events.

20 Right-click on the Report’s OnStartPage event
in the listview and select New.

21 In the Code Editor, enter the code below:

Code Report OnStartPage Event
procedure ReportOnStartPage;
begin

 GroupHeaderBand1.Visible := (Report.AbsolutePageNo mod 2=0);

end;

365Dynamic Duplexing

RAP TUTORIALS
Compile and Preview
1 To compile your code, right-click on the Code
Editor and select Compile.

To view the results, click the Preview tab

As you scroll through the report you’ll notice that
every other page contains the disclaimer. The
summary band should make sure that the last page
of the report is also the disclaimer. If you print this
report in duplex mode, the disclaimer should
appear on the back of every page.

367Adding Functions to RAP

RAP TUTORIALS
Adding Functions to RAP

Overview
This tutorial will show you how to do the follow-
ing:

• Add two functions and a category to the func-
tions list in the Code Toolbox.

• Add a pass-through function to retrieve the appli-
cation’s filename, a function to expose the
ExtractFilename Delphi function, and a category
named “Filename.”

Create a New Unit
1 Open Delphi and select Close All from the file
menu.

2 Select File | New | Unit from the Delphi menu.

3 Select File | Save As | C:\ My RAP Tutorials

4 Save the file as myRapFuncs.pas. This unit will
contain our new pass-through functions. This unit
will contain our new pass-through functions.

Edit Uses Clause
1 Add a uses clause between the interface and
implementation sections.

2 Add Forms, raFunc, and ppRTTI to the clause.
The code should look like this:

unit myRapFuncs;

interface

uses
 Forms, raFunc, ppRTTI;

implementation

Note: raFunc contains TraSystemFunction (from
which all pass-through functions descend) and the
raRegisterFunction, which is used to register your
pass-through functions with RAP.

368 Adding Functions to RAP

RAP TUTORIALS
Add TraSystemFunction Descendent
for Category
1 We need a new TraSystemFunction descendant
to define a new category. Add a type section under
the uses clause of your new unit. We will add a
descendant to override TraSystemFunction.Cate-
gory. Add the following class declaration to the
type section:

2 In the unit's implementation section, add the fol-
lowing:

Now anything that inherits from TmyFilename-
Function will appear in the Filename category in
the Code Toolbox.

This class will not be registered with RAP since it
does not actually implement a pass-through func-
tion.

Code TmyFilenameFunction Class Declaration

type

 TmyFilenameFunction = class(TraSystemFunction)
 public
 class function Category: String; override;
 end;

Code Category Method

implementation

class function TmyFilenameFunction.Category: String;
begin

 result := 'Filename';
end;

369Adding Functions to RAP

RAP TUTORIALS
Add New Function Class
Under the TmyFilenameFunction class declaration,
add the following class declaration:

Implement ExecuteFunction
In the unit's implementation section, enter the fol-
lowing:

Implement GetSignature
In the unit's implementation section, enter the fol-
lowing:

Code TmyApplicationFilenameFunction Class Declaration

TmyApplicationFilenameFunction = class (TmyFilenameFunction)
 public
 procedure ExecuteFunction(aParams: TraParamList); override;
 class function GetSignature: String; override;
 class function HasParams: Boolean; override;

 end;

Code ExecuteFunction Method

procedure TmyApplicationFilenameFunction.ExecuteFunction(aParams: TraParamList);
var
 lsResult: String;

begin

 lsResult := Application.Exename;
 SetParamValue(0, lsResult);

end;

Code GetSignature Method

class function TmyApplicationFilenameFunction.GetSignature: String;
begin

 Result := 'function ApplicationFilename: string;';

end;

370 Adding Functions to RAP

RAP TUTORIALS
Implement HasParams
In the unit's implementation section, enter the fol-
lowing:

Add Initialization
1 At the bottom of the unit, before the final end,
add an initialization section.

2 In this section, enter the following:

This line actually registers the pass-through func-
tion with RAP.

Code HasParams Method

class function TmyApplicationFilenameFunction.HasParams: Boolean;
begin

 result := False;

end;

Code ApplicationFilename Function Registration

initialization

 raRegisterFunction('ApplicationFilename',TmyApplicationFilenameFunction);

end.

371Adding Functions to RAP

RAP TUTORIALS
Add myRapFuncs to a Project
Now we need to see your new function in action.
We will add the unit to one of the End User demos.

1 Open the RBuilder | Demos| 3. EndUser |
1. Report Explorer | EndUser.dpr project.

2 Open the main form, myEURpt.pas.

3 Scroll down until you see a series of
{$DEFINE} statements. Look for the one that
defines RAP and remove the 'x' from in front of the
$DEFINE.

Now, we need to add myRapFuncs to the project.

4 Select Project | Add to Project.

5 Navigate to My RAP Tutorials and select
myRapFuncs.pas.

6 Go to the bottom of the Uses clause and add
myRapFuncs to the clause.

7 Compile and run the project.

8 When the main form appears, click Launch.

9 Navigate to the Customers folder in the Report
Explorer.

10 Double-click the Customer List report.

Note: You should see a Calc tab displayed in the
Report Designer. If you do not, go back and make
sure you enabled RAP and select Build All in Del-
phi.

See ApplicationFilename in Code Tool-
box
1 Click the Calc tab.

2 Click the Language tab in the Code Toolbox and
scroll to the top of the Toolbox treeview to find the
Function node.

3 Click the Filename node.

In the function list you should see the fruits of your
efforts.

Now let's see it in action...

372 Adding Functions to RAP

RAP TUTORIALS
Add ApplicationFilename to Code
1 Right-click on the Report Explorer's tree view
and select Events.

2 Select the Report node, if it is not already
selected, and click the BeforePrint event listed in
the right-hand pane.

3 Click the Code Editor to activate the event han-
dler stub and add a local variable as shown below.

4 Add the code for the ReportBeforePrint event.

5 Right-click on the Code Editor and select Com-
pile.

6 Assuming the code compiles, click the Preview
tab.

Congratulations! You should see a message dialog
with the application's filename.

Code Report BeforePrint Event
var
 lString: String;
begin

 lString := ApplicationFilename;
 ShowMessage(lString);

end;

373Extending the RAP RTTI

RAP TUTORIALS
Extending the RAP RTTI

Overview
This tutorial will show you how to do the follow-
ing:

• Make RAP aware of a new component.

• Register a new class to surface TDataBase within
RAP.

• Add support for the public property, Directory
and the public method, ValidateName.

Create a New Unit
1 Select File | Open | RBuilder | Demos | 3.
EndUser | 1. Report Explorer | EndUser.dpr.

2 Select File | New | Unit, to create a new unit.

3 Save the unit as myRapClass.pas in the C: | My
RAP Tutorials directory. This unit will contain our
new TraRTTI descendant.

4 In the new unit, add a uses clause between the
interface and implementation sections and add
Classes, Forms, raFunc, ppRTTI, db, dbTables and
ppUtils to the clause.

unit myRapClass;

interface

uses
Classes, Forms, raFunc, ppRTTI, db, dbTa-
bles, ppUtils

374 Extending the RAP RTTI

RAP TUTORIALS
Declare TmyTDataBaseRTTI
Next, we must find the proper TraRTTI descendant
from which to descend this class. TDataBase
descends from TCustomConnection which
descends from TComponent. There is no TraRTTI
descendant for TCustomConnection, but there is
one for TComponent (TraTComponentRTTI) so
we'll use that one.

1 Add a type section below the Uses clause to
contain our new TmyTDataBaseRTTI component.

2 Add the following declaration to the type sec-
tion:

Implement GetPropList
Implement the overridden method, GetPropList
with the following code:

Code TmyTDataBaseRTTI Class Declaration
type

TmyTDataBaseRTTI = class(TraTComponentRTTI)
 public
 class procedure GetPropList(aClass: TClass; aPropList: TraPropList); override;
 class function RefClass: TClass; override;
 class function GetPropRec(aClass: TClass; const aPropName: String; var aPropRec:

TraPropRec): Boolean; override;
 class function CallMethod(aObject: TObject; const aMethodName: String; aParams:

TraParamList; aGet: Boolean): Boolean; override;
 class function GetParams(const aMethodName: String): TraParamList; override;
 class function GetPropValue(aObject: TObject; const aPropName: String; var

aValue): Boolean; override;
 class function SetPropValue(aObject: TObject; const aPropName: String; var

aValue): Boolean; override;

 end;

Code GetPropList Method

class procedure TmyTDataBaseRTTI.GetPropList(aClass: TClass; aPropList: TraPropList);
begin

 inherited GetPropList(aClass, aPropList);

 aPropList.AddProp('Directory');
 aPropList.AddMethod('ValidateName');

end;

375Extending the RAP RTTI

RAP TUTORIALS
Implement RefClass
Add the following code to the implementation sec-
tion:

Implement GetPropRec
Implement the overridden method, GetPropList
with the following code:

Code RefClass Method

class function TmyTDataBaseRTTI.RefClass: TClass;
begin

 Result := TDataBase;

end;

Code GetPropRec Method

class function TmyTDataBaseRTTI.GetPropRec(aClass: TClass;
 const aPropName: String; var aPropRec: TraPropRec): Boolean;
begin

 Result := True;
 if ppEqual(aPropName, 'Directory') then
 PropToRec(aPropName, daString, False, aPropRec)
 else if ppEqual(aPropName, 'ValidateName') then
 MethodToRec(aPropName, True, aPropRec)
 else
 Result := inherited GetPropRec(aClass, aPropName, aPropRec);

end;

376 Extending the RAP RTTI

RAP TUTORIALS
Implement CallMethod
Implement the overridden method, CallMethod,
with the following code:

Implement GetParams
Implement the overridden method, GetParams,
with the following code:

Code CallMethod Method

class function TmyTDataBaseRTTI.CallMethod(aObject: TObject; const aMethodName: String;
aParams: TraParamList; aGet: Boolean): Boolean;

var
 lsName: String;
 lbResult: Boolean;
 lDataBase: TDataBase;
begin

 Result := True;
 lDataBase := TDataBase(aObject);
 if ppEqual(aMethodName, 'ValidateName') then
 begin
 aParams.GetParamValue(0, lsName);
 try
 lDataBase.ValidateName(lsName);
 lbResult := True;
 except
 On EDatabaseError do
 lbResult := False;
 end;
 aParams.SetParamValue(1, lbResult);
 end
 else
 Result := inherited CallMethod(aObject, aMethodName, aParams, aGet);

end;

Code GetParams Method

class function TmyTDataBaseRTTI.GetParams(const aMethodName: String): TraParamList;
begin

 if ppEqual(aMethodName, 'ValidateName') then
 begin
 Result := TraParamList.Create;
 Result.AddParam('Name', daString, nil, '', True, False);
 Result.AddParam('Result', daBoolean, nil, '', False, False);
 end
 else
 Result := inherited GetParams(aMethodName);

end;

377Extending the RAP RTTI

RAP TUTORIALS
Implement GetPropValue
Implement the overridden method, GetPropValue,
with the following code:

Implement SetPropValue
Implement the overridden method, SetPropValue,
with the following code:

Register the Class
In the unit's initialization section, add the following
call:

raRegisterRTTI(TmyTDataBaseRTTI);

In the finalization section, add the following call:

raUnregisterRTTI(TmyTDataBaseRTTI);

Code GetPropValue Method

class function TmyTDataBaseRTTI.GetPropValue(aObject: TObject;
 const aPropName: String; var aValue): Boolean;
begin

 Result := True;
 if ppEqual(aPropName, 'Directory') then
 String(aValue) := TDataBase(aObject).Directory

 else
 Result := inherited GetPropValue(aObject, aPropName, aValue);

end;

Code SetPropValue Method

class function TmyTDataBaseRTTI.SetPropValue(aObject: TObject;
 const aPropName: String; var aValue): Boolean;
begin

 Result := True;
 if ppEqual(aPropName, 'Directory') then
 TDataBase(aObject).Directory := String(aValue)

 else
 Result := inherited SetPropValue(aObject, aPropName, aValue);

end;

378 Extending the RAP RTTI

RAP TUTORIALS
Create Access Function
For our purposes, we need to be able to get to a
TDataBase so we can test the new RTTI class. We
could simply create one, but let's get one thatal-
ready exists. To do this, we'll create a new pass-
through function that will allow us to get to a Del-
phi object by name. Creating pass-through func-
tions is covered in another tutorial, so we'll speed
through this.

1 Add a new TraSystemFunction descendant,
TmyDevelopersFunction.

Code TmyDevelopersFunction

type

TmyDevelopersFunction = class (TraSystemFunction)
public
 class function Category: String; override;

end;

implementation

class function TmyDevelopersFunction.Category: String;
begin

 Result := 'Developer';

end;

379Extending the RAP RTTI

RAP TUTORIALS
2 Add a new TmyDevelopersFunction, TmyGet-
DelphiComponentFunction.

3 To register the new pass-through function, add
the following to the initialization section

raRegisterFunction('GetDelphiComponent', TmyGetDelphiComponentFunction);

Code TmyGetDelphiComponentFunction

TmyGetDelphiComponentFunction = class (TmyDevelopersFunction)
public
 procedure ExecuteFunction(aParams: TraParamList); override;
 class function GetSignature: String; override;
end;

implementation

procedure TmyGetDelphiComponentFunction.ExecuteFunction(aParams: TraParamList);
var
 lsString: String;
 lResult: TComponent;
begin

 GetParamValue(0, lsString);
 lResult := Application.MainForm.FindComponent(lsString);
 SetParamValue(1, lResult);
end;

class function TmyGetDelphiComponentFunction.GetSignature: String;
begin
 Result := 'function GetDelphiComponent(const aComponentName: String): TComponent;';

end;

380 Extending the RAP RTTI

RAP TUTORIALS
Add myRapClass to a Project
We will add the unit to one of the End User demos.

1 Open the RBuilder | Demos | 3. EndUser |
1. Report Explorer | EndUser.dpr project.

2 Open the main form, myEURpt.pas.

3 Scroll down until you see a series of
{$DEFINE} statements. Look for the one that
defines RAP and remove the 'x' from in front of the
$DEFINE.

4 Go to the bottom of the uses clause and add
myRapClass to the clause.

5 Compile and run the project.

6 Navigate to the Invoices folder in the Report
Explorer.

7 Double-click the Invoices report.

8 In the Design tab, add two Variables to the
Header band, one below the other. We'll use these
variables to display information from our TData-
Base.

la
yo

ut
 c

he
ck

381Extending the RAP RTTI

RAP TUTORIALS
Write RAP Code
1 Click the Calc tab.

2 Right-click the Code Explorer treeview and
select Module.

3 Select the Declarations node, right-click the
Variables item and select New.

4 Enter the following into the Code Editor:

gDataBase: TDataBase;

gbValidName: Boolean;

5 Now select the Events node, right-click OnCre-
ate and select New.

6 In the event handler, enter the code for the Glo-
bal OnCreate event.

7 Right-click the Code Explorer treeview and
select Events.

8 Select Variable1 in the treeview.

9 Right-click the OnCalc event and select New.

10 Enter the following code in the event handler:

Value := gDataBase.Directory;

11 Select Variable2 in the treeview.

12 Right-click the OnCalc event and select New.

13 Enter the following code in the event handler:

if gbValidName then
 Value := 'True'
else
 Value := 'False';

Code Global OnCreate Event

gDataBase := TDataBase(GetDelphiComponent('euDatabase'));
if (gDataBase <> nil) then
 begin

 gbValidName := gDataBase.ValidateName('DBDEMOS');

 end;

382 Extending the RAP RTTI

RAP TUTORIALS
Preview the Report
Now we will preview the report. Note that when
we call ValidateName, an exception will be raised
and the program's execution will halt in Delphi's
debugger. However, keep in mind that if you were
running this application outside of Delphi, the
exception would be handled and the user would see
no problem.

1 Click the Preview tab.

You should see your two variables, one indicating
a path and the other a boolean value.

Congratulations! You have successfully added
your first class to RAP.

383Printing a Description of AutoSearch Criteria

RAP TUTORIALS
Printing a Description of AutoSearch Criteria

Overview
This tutorial will walk you through the following

• Gain access to the AutoSearch field descriptions
via RAP

• Create a new report and dataview for this tuto-
rial.

Create a New Report
1 Open Delphi and select Close All from the File
menu.

2 Select File | New Project.

3 Place a Report component on the new

form.

Note: RAP can be used in Delphi design-time or at
run-time. Obviously your users will use the Calc
Workspace at run-time but you can use it to create
your reports in either environment. This tutorial
will be done in design-time.

4 Open the ReportDesigner by double-clicking
the Report component.

5 Click the Data tab.

6 Select File | New.

7 Select Query Designer from the New Items dia-
log and click OK.

8 On the Tables tab, double-click Clients.

9 On the Fields tab, check the All Fields check-
box.

Next we will create search criteria...

384 Printing a Description of AutoSearch Criteria

RAP TUTORIALS
Create Search Criteria
1 On the Search tab, double-click First Name to
add a criteria.

2 For the new criteria, set Operator to "Like" and
set Value to "J."

3 Check the AutoSearch checkbox.

4 Double-click Last Name to add a criteria.

5 For this criteria, set Operator to "Like" and set
Value to "J."

6 Check the AutoSearch checkbox.

7 Right-click the second criteria and select "Insert
OR".

8 Click the OK button in the Query Designer.
You should now see the DataView.

9 Click the Preview button on the DataView. You
should see two records displayed, Jennifer Davis
and Arthur Jones.

Layout the Report
1 Click the Design tab.

2 Turn off the Footer band by selecting Footer
from the Report menu.

3 Drop two DBText controls onto the Detail
band.

4 Assign DBText1 to First Name and DBText2 to
Last Name.

5 Drop a Memo in the Header band.

6 Set the Memo to Stretch – this will hold the
AutoSearch field descriptions.

Write the Code
1 Click the Calc tab.

2 Right-click the Code Explorer's treeview and
select Events.

3 Click the Report node.

4 Right-click the OnStartPage event in the list-
view and select New.

5 In the event handler stub in the Code Editor,
enter the following code (note that you can either
type this in or drag and drop the code from the
Code Toolbox):

Report.GetAutoSearchDescription-
Lines(Memo1.Lines);

la
yo

ut
 c

he
ck

385Printing a Description of AutoSearch Criteria

RAP TUTORIALS
Compile and Preview
1 To compile your code, right-click on the Code
Editor and select Compile.

2 To view the results, click the Preview tab.

Congratulations! You should see a description of
the AutoSearch fields in the Memo.

387Displaying Delphi Forms from RAP

RAP TUTORIALS
Displaying Delphi Forms from RAP

Overview
The AutoSearch functionality is well suited to poll-
ing the end user for search criteria, however some-
times it is necessary to ask the end user for
information that is not related to the database. In
Delphi this would be easy, but the end user, with-
out Delphi, would be unable to show custom forms
unless you expose them via pass-through func-
tions.

You will learn the following from this tutorial:

• The process of making custom forms available to
the end use in RAP.

• Create custom forms and then make them avail-
able from within RAP.

• Create a report which accesses these forms.

Create User Input Form
1 Open Delphi and Select File | Close All.

2 Select File | New Form.

3 Configure the form’s properties:

Name frmMyUserInput
Height 211
Width 387
BorderStyle bsDialog
Position poScreenCenter
Caption 'User Input'

4 Save the new unit in the RBuilder | Demos |
3. EndUser | 1. Report Explorer directory as
myUserInputForm.pas.

Add Components
1 Add a PageControl component to the form and
set its properties:

Name pgCtlMain
Height 141
Align alTop
Style tsFlatButtons

2 Place a Button on the form and set its proper-
ties:

Name bnOK
Left 110
Top 148
Caption 'OK'
Default True
ModalResult mrOK

388 Displaying Delphi Forms from RAP

RAP TUTORIALS
3 Place another Button on the form and set its
properties:

Name bnCancel
Left 194
Top 148
Caption 'Cancel'
ModalResult mrCancel

4 With the existing PageControl, add two new
TabSheets. Set the names:

Name = tabStartup
Name = tabMasterRecord

Note: The TabVisible property for both these tab-
sheets will be set to False in the form's OnCreate
event

5 On tabStartup add a Label and set its properties:

Name lblHeading
Left 8
Top 16
Width 43
Caption 'Heading:'

6 Place an Edit on tabStartup and set its proper-
ties:

Name ebHeading
Left 68
Top 12
Width 281
Text 'Enter a Report Head-
ing'

7 Now, place a RadioGroup on tabStartup and set
its properties:

Name rgDestination
Left 8
Top 44
Width 345
Height 61
Caption 'Destination '
Columns 2
ItemIndex 0
Items.Strings 'Marketing'
 'CEO'
 'Vice Presidents'
 'Files'

8 On tabMasterRecord add 2 Labels and set their
properties:

Name lblCompany
Left 12
Top 8
Width 47
Caption 'Company:'

Name lblCompanyName
Left 68
Top 8
Width 82
Caption 'CompanyName'

9 Next, add a CheckBox to tabMasterRecord, and
set its properties:

Name cbIncludeAddress
Left 32
Top 40
Width 181
Caption 'Include Address Info
in Report'

389Displaying Delphi Forms from RAP

RAP TUTORIALS
Code Form Methods
1 Next, add an OnCreate method for the form and
enter the following code:

 tabStartup.TabVisible := False;

tabMasterRecord.TabVisible := False;

2 Add the following public method to the form:

Create a New Unit
1 Create a new unit and save it in the RBuilder |
Demos | 3. EndUser | 1. Report Explorer directory
as myRapFuncsForm.pas.

2 Add the following uses clause:

3 Add the following class declaration:

Code InitDialog Method

procedure TfrmMyUserInput.InitDialog(aStartupPage: Boolean; const aDefaultHeading,
aCompanyName: String);

begin

 if aStartupPage then
 pgCtlMain.ActivePage := tabStartup

 else
 pgCtlMain.ActivePage := tabMasterRecord;
 ebHeading.Text := aDefaultHeading;
 lblCompanyName.Caption := aCompanyName;

end;

Code Uses Clause

uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs, raFunc,
ppRTTI, myUserInputForm;

Code TmyUserInputFormFunction Class Declaration

TmyUserInputFormFunction = class (TraSystemFunction)
public
 class function Category: String; override;

end;

390 Displaying Delphi Forms from RAP

RAP TUTORIALS
4 Implement the Category function with this code.

5 Add the following TmyUserInputFormFunc-
tion descendant:

Code Category Method

class function TmyUserInputFormFunction.Category: String;
begin
 result := 'User Input Forms';

end;

Code TmyShowStartupFormFunction Class Declaration

TmyShowStartupFormFunction = class(TmyUserInputFormFunction)
 procedure ExecuteFunction(aParams: TraParamList); override;
 class function GetSignature: String; override;

end;

391Displaying Delphi Forms from RAP

RAP TUTORIALS
6 Implement TmyShowStartupFormFunction
with this code.

7 Add the following TmyUserInputFormFunc-
tion descendant:

Code ExecuteFunction Method

procedure TmyShowStartupFormFunction.ExecuteFunction(aParams: TraParamList);
var
 lString: String;
 lInteger: Integer;
 lbResult: Boolean;
 lInputForm: TfrmMyUserInput;
begin

 GetParamValue(0, lString);
 GetParamValue(1, lInteger);

 lInputForm := TfrmMyUserInput.Create(Application);
 try
 lInputForm.InitDialog(True, lString, '');

 if lInputForm.ShowModal = mrOK then
 begin
 lString := lInputForm.ebHeading.Text;

 lInteger := lInputForm.rgDestination.ItemIndex;
 lbResult := True;
 end
 else
 lbResult := False;
 finally
 lInputForm.Free;
 end;

 SetParamValue(0, lString);
 SetParamValue(1, lInteger);
 SetParamValue(2, lbResult);
end;

class function TmyShowStartupFormFunction.GetSignature: String;
begin

 Result := 'function ExecuteStartupForm(var aReportHeading: String; var aDestination-
Index: Integer): Boolean;';

end;

Code TmyShowMasterRecordFormFunction Class Declaration

TmyShowMasterRecordFormFunction = class(TmyUserInputFormFunction)
 procedure ExecuteFunction(aParams: TraParamList); override;
 class function GetSignature: String; override;
end;

392 Displaying Delphi Forms from RAP

RAP TUTORIALS
8 Implement TmyShowMasterRecordFormFunc-
tion with this code.

9 Finally, add an initialization section to the unit
and add the following two lines:

Code ExecuteFunction Method

procedure TmyShowMasterRecordFormFunction.ExecuteFunction(aParams: TraParamList);
var
 lString: String;
 lBoolean: Boolean;
 lbResult: Boolean;
 lInputForm: TfrmMyUserInput;
begin
 GetParamValue(0, lString);
 GetParamValue(1, lBoolean);

 lInputForm := TfrmMyUserInput.Create(Application);
 try
 lInputForm.InitDialog(False, '', lString);
 lInputForm.cbIncludeAddress.Checked := lBoolean;

 if lInputForm.ShowModal = mrOK then

 begin
 lBoolean := lInputForm.cbIncludeAddress.Checked;
 lbResult := True;
 end
 else
 lbResult := False;
 finally
 lInputForm.Free;
 end;

 SetParamValue(1, lBoolean);
 SetParamValue(2, lbResult);
end;

class function TmyShowMasterRecordFormFunction.GetSignature: String;
begin
 result := 'function ExecuteMasterRecordForm(const aCompanyName: String; var aDisplay-
Address: Boolean): Boolean;';

end;

Code Function Registration

initialization

raRegisterFunction('ExecuteStartupForm', TmyShowStartupFormFunction);
raRegisterFunction('ExecuteMasterRecordForm', TmyShowMasterRecordFormFunction);

393Displaying Delphi Forms from RAP

RAP TUTORIALS
Add Units to Project
1 Open the RBuilder | Demos | 3. EndUser |
1. Report Explorer | EndUser.dpr project.

2 Select Project | Add to project, and add the two
new units, myUserInputForm.pas and myRapFunc-
sForm.pas.

3 Compile and run the project.

4 Create a new report.

Create a DataView
1 Once the Report Designer is open, click the
Data tab.

2 Select File | New | Query Designer and click
OK.

3 In the Query Designer Tables tab double-click
the Customer table.

4 Double-click the Orders table to open the Join
Table dialog and remove the TaxRate join from the
Joined Fields list. Then click OK.

5 In the Fields tab check the All Fields check box.

6 Click OK to create the DataView.

Layout the Report
1 Click the Design tab

2 From the Report menu, select Groups... and cre-
ate a group based on plCustomer.CustNo

3 From the Report menu, select the Title, Header
and Footer items to turn on the Title band and turn
off the Header and Footer bands.

4 In the Group Header band, add a DBText , a

Region and two Variables inside the
region.

5 Assign the DBText to the Company field and set
it to AutoSize.

6 The two variables inside the region will hold
address information so place the region and the
variables beneath the DBText component.

7 Turn off the line around the region.

8 In the Title of the report, add 3 Variables .

9 Variable3 will be the Report title. Center it at
the top of the band and set it to 16pt Arial.

10 Variable4 will be our salutation. Place it half an
inch below Variable3 against the left margin. Set it
to 10pt Times New Roman.

11 Variable5 is the message body. Place it just
below Variable 4 against the left margin. Set its
width to 7.5" and its height to 0.5". Set WordWrap
to True.

12 In the Detail band, add 3 DBText controls.

13 Place the DBText controls left to right, assigned
to OrderNo, SaleDate and AmountPaid.

14 Set the Detail band to Static height and set its
height to 0.25".

Declare Global Variables
1 Click the Calc tab.

2 Right-click the Code Explorer's treeview and
select Module.

3 Select the Declarations node.

4 Right-click the Variables item in the listview
and select New.

5 In the Code Editor, add the following declara-
tions:

 myHeaderString: String;
 myRecipientString: String;
 myDescriptionString: String;

These variables correspond to the Variables you
created in the Title band.

394 Displaying Delphi Forms from RAP

RAP TUTORIALS
Implement Global OnCreate
1 Click the Events node.

2 Right click the OnCreate item in the listview
and select New.

3 In the Code Editor, add the following two local
variables to the event handler:

var
 liIndex: Integer;
 lbExecuted: Boolean;

4 Enter the code on the following page for the
event handler.

Basically, in this code we are executing the startup
version of the form where we ask for a report head-
ing and for a recipient. liIndex tells us which radio
button was selected on the form, so we carefully
phrase our salutation accordingly.

Code Global OnCreate Event

begin

 liIndex := 0;
 myHeaderString := 'Monthly Sales Report';

 if ExecuteStartupForm(myHeaderString, liIndex) then
 begin
 case liIndex of
 0:
 begin
 myRecipientString := 'Attn: Marketing Team, ';
 myDescriptionString := ' Here are the monthly figures someone down there

asked for. Pass this report from desk to desk until someone remembers they
requested it.';

 end;
 1:
 begin
 myRecipientString := 'My humble apologies, Your Highness,';
 myDescriptionString := ' I regret to interrupt you, but this lowly pro-

grammer brings you the monthly sales report that you will not like.';
 end;
 2:
 begin
 myRecipientString := 'Dear Brogan, Ethan, Jake, Rebekah and Kathleen,';
 myDescriptionString := ' Since I will soon be joining you as a VP, this

will be my last monthly report.';
 end;
 3:
 begin
 myRecipientString := 'FILE COPY';
 myDescriptionString := 'Monthly Sales Report';
 end;
 end;
 end
 else
 begin
 myRecipientString := 'Attn: Marketing Team, ';
 myDescriptionString := ' Here are the monthly figures someone down there

asked for. Pass this report from desk to desk until someone remembers they
requested it.';

 end;

end;

395Displaying Delphi Forms from RAP

RAP TUTORIALS
Group Header BeforePrint Event
1 Right click the Code Explorer's treeview and
select Events.

2 Scroll down the tree view and find the Group
Header node.

3 Click that node, then right-click the BeforePrint
event in the listview.

4 Implement this event handler with the code as
shown below.

5 Right click the Code Explorer's treeview and
select Variables.

6 Click the Title band node.

In the listview you will see the three Variables that
reside in the Title band. In the next step, we will
assign values for these variables

Code Group Header BeforePrint Event

var
 lDisplayAddress: Boolean;
begin

 lDisplayAddress := True;
 ExecuteMasterRecordForm(plCustomer['Company'], lDisplayAddress);
 Region1.Visible := lDisplayAddress;

end;

396 Displaying Delphi Forms from RAP

RAP TUTORIALS
7 For the Variables, make the following assign-
ments:

8 Click the Group Header node in the Code
Explorer's treeview.

Make the following assignments by enterning the
code as shown below.

Code Title Band Variable OnCalc Events

Variable3:
Value := MyHeaderString;

Variable4:
Value := MyRecipientString;

Variable5:
Value := MyDescriptionString;

Code Title Band Variable OnCalc Events

Variable1:

Value := plCustomer['Addr1'] + ' ' + plCustomer['Addr2'];

Variable2:

Value := plCustomer['City'] + ', ' + plCustomer['Country'] + ' ' + plCustomer['Zip'];

397Displaying Delphi Forms from RAP

RAP TUTORIALS
Compile and Preview
1 Compile the code by right clicking in the Code
Editor and selecting Compile.

2 Now click the Preview tab.

Before anything appears you should see the Startup
Form asking you for a heading and a destination
(recipient).

3 Enter a value for a title and select a recipient and
click ok.

Now, this next dialog will get a little annoying, but
this is a demo to make a point, so bear with it.

4 The Master Record dialog will display for each
master record group. Click the check box to indi-
cate whether to display the company's address.

That's all. Don't forget that a finished version of
this tutorial exists in the RAP demo project as
report #35.

APPLICATION TUTORIALS

APPLICATION TUTORIALS

Building a Reporting Application 405

Building an End-User Reporting Application 413

Adding Data Dictionary Support to the End-User Application 419

Customizing the Report Explorer Form 425

Building A Report Application Using InterBase 427

401Building a Reporting Application

APPLICATION TUTORIALS
APPLICATION TUTORIALS

Building a Reporting Application

Overview
This tutorial will show you how to do the follow-
ing:

• Build an architecture for dynamically creating
report forms

• Use your own customized print preview form

Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'frmMain'.

3 Select File | Save As from the Delphi menu and
save the form under the name rbMain in the My
RB Tutorials directory (established on page 181).

4 Select View | Project Manager from the Delphi
main menu.

5 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

6 Save the project under the name rbMainProj in
the My RB Tutorials directory.

Create a ListBox and Preview Button
on the Main Form
1 Select the Standard tab on the Delphi compo-
nent palette.

2 Add a ListBox to the upper left corner of the
Delphi form.

402 Building a Reporting Application

APPLICATION TUTORIALS
3 Configure the ListBox:

Name lbxReports
Left 8
Top 8
Width 280
Height 300

4 Create a button below the ListBox.

5 Configure the Button:

Name btnPreview
Caption Preview
Left 208
Top 312

6 Set the form size:

Height 368
Width 303

7 Select File | Save from the Delphi main menu.

8 Close the rbMain unit.

Add a Form to the Project
1 Select View | Project Manager from the Delphi
main menu.

2 Right-click over rbMainProj in the Project Man-
ager and select the Add... menu option.

3 Locate the rbViaWiz unit in the Tutorials direc-
tory. If you have not completed this tutorial, you
can find this unit in RBuilder\Tutorials. Add this
form to your project.

4 Right-click over the rbMainProj project and
access the Options... menu item. The Project
Options dialog will be displayed.

5 Select the Forms tab. 'frmViaReportWizard'
should be listed in the Auto-create forms list.
Select this form and click '>' button to move it to
the Available forms list. Close the dialog.

Note: When a form is added to a Delphi project, it
is automatically added to the Auto-create list.
Forms that appear in this list are created when the
application is executed. We will be instantiating
this form manually using Object Pascal and do not
want the application to create it for us.

Create an Ancestor Form Class
1 Select File | New... from the Delphi main menu.

2 Select the Unit icon and click the OK button. A
new unit entitled 'Unit1' will be created.

3 Select File | Save As from the Delphi main
menu and save the unit under the name 'rbClass' in
the My RB Tutorials directory.

4 Add the following code between the interface
and implementation section of the unit:

uses
Forms, ppReport;

type

TrbReportForm = class(TForm)
protected

function GetReport: TppReport; virtual;
abstract;

public
property Report: TppReport read
GetReport;

end;

403Building a Reporting Application

APPLICATION TUTORIALS
Note: A Delphi form is just another class within
the VCL. This declaration creates a non-visual
descendant of a TForm. It then declares a report
property that can be used by any routine referenc-
ing the class. Next we will modify a visual form to
become a descendant of TrbReportForm. We will
then implement the GetReport procedure by return-
ing the report object contained in the form. This
technique allows us to easily work with the report
objects in TrbReportForm descendants.

5 Select File | Save from the Delphi main menu.

Make the Tutorial Report Form a
Descendant of TrbReportForm
1 Select View | Project Manager from the Delphi
main menu.

2 Double-click on the rbViaWiz unit to open the
form.

3 Access the rbViaWiz unit and maximize the
Code Editor.

4 Add rbClass to the uses clause at the top of the
unit. The code should look like this:

unit rbViaWiz;

interface

uses
Windows, Messages, SysUtils, Classes,
Graphics, Controls, Forms, Dialogs,
StdCtrls, ppBands, ppCtrls, ppPrnabl,
ppClass, ppDB, ppProd, ppReport,
ppComm, ppCache, ppDBPipe, ppDBBDE, Db,
DBTables, ppVar, rbClass;

Note: We must add the rbClass unit to the uses
clause so that we can descend from the TrbReport-
Form.

5 Change the inherited form name from TForm to
TrbReportForm. The first line of the form class
declaration should look like this:

type
TfrmViaReportWizard =
class(TrbReportForm)

6 Click on the rbClass tab in the Code Editor.

7 Copy the protected section of the class (includ-
ing the protected keyword) into your clipboard.
Here is the code you need to copy:

protected
function GetReport: TppReport; virtual;
abstract;

8 Click on the rbViaWiz tab in the Code Editor.

9 Scroll down until you locate the public keyword
at the bottom of class declaration for the form.

10 Insert the contents of your clipboard above the
public keyword. The declaration should now look
like this:

protected
function GetReport: TppReport; vir-
tual;
abstract;

public
{ Public declarations }

end;

404 Building a Reporting Application

APPLICATION TUTORIALS
11 Replace the virtual and abstract keywords with
override so the declaration looks like this:

protected
function GetReport: TppReport;
override;

public
{ Public declarations }
end;

12 Copy the GetReport function declaration into
the clipboard and scroll down to the implementa-
tion section of the unit.

13 Paste the declaration into the implementation
section, remove the override keyword, and add the
following code so that the function looks like this:

implementation
{$R *.DFM}

function TfrmViaReportWizard.GetReport:
TppReport;

begin
Result := rbCustomerList;

end;

Note: This routine will be called whenever the
rbReportForm.Report property is referenced.

14 Select File | Save from the Delphi main menu.

15 Close the Code Editor.

Populate the List Box in the OnCreate
Event of the Main Form
1 Select View | Project Manager from the Delphi
main menu.

2 Double-click on rbMain to open this form.

3 Select the Events tab of the Object Inspector.

4 Double-click the OnCreate event. The event
handler shell will be generated and the Code Editor
will be displayed.

5 Add the following line of code to the event han-
dler:

lbxReports.Items.AddObject('Creating a
Report via the Report Wizard',
TObject(TfrmViaReportWizard));

Note: This code stores a description of the report
and the class type for the form containing the
report in the list. The class type will be used to
instantiate an instance of the form.

Code the LaunchReport Procedure in
the Main Form
1 Add the LaunchReport procedure declaration to
the private section of the main form. The code
should look like this:

private
procedure LaunchReport;

public
{ Public declarations }

end;

2 Add the following units to the uses clause at the
top of the unit:

ppReport, rbViaWiz, rbClass

405Building a Reporting Application

APPLICATION TUTORIALS
3 Add the LaunchReport procedure to the imple-
mentation section. The code should look like the
code below.

4 Select File | Save from the Delphi main menu.

Note: This routine retrieves the class type from the
list box, instantiates a form of that type, retrieves
the report from the form, and then prints the report.
This routine assumes two things: that the
Report.ModalPreview property is True and that the
class type in the ListBox is a TrbReportForm
descendant. As you can see, the abstract TrbRe-
portForm class comes in quite handy. As we go
forward adding more reports to this project, we can
make the forms descendants of this class and add
the description and class type to the list box, and
the reports will work ’automatically’.

Hook the LaunchReport Procedure to
the ListBox and Preview Button
1 Click the Toggle Form/Unit icon on the Delphi
View toolbar (or hit the F12 key). You should see
the main form.

2 Select the ListBox control and then double-click
on the OnDblClick event in the Object Inspector.

3 Add a call to LaunchReport to this event han-
dler. The code should look like this:

procedureTfrmMain.lbxReportsDlClick(Sender:
TObject);

begin
LaunchReport;

end;

4 Select the Preview button on the form and then
double-click on the OnClick event in the Object
Inspector.

5 Add a call to LaunchReport to this event han-
dler.

6 Select File | Save from the Delphi main menu.

7 Select Project | Compile rbMain. Fix any com-
pilation problems.

8 Close the Code Editor and the rbMain form.

procedure TfrmMain.LaunchReport;
var

lFormClass: TFormClass;
liIndex: Integer;
lForm: TForm;
lReport: TppReport;

begin

liIndex := lbxReports.ItemIndex;

if (liIndex = -1) then Exit;

lFormClass := TFormClass(lbxReports.Items.Objects[liIndex]);

lForm := lFormClass.Create(Application);

lReport := TrbReportForm(lForm).Report;

lReport.Print;

lForm.Free;

end;

406 Building a Reporting Application

APPLICATION TUTORIALS
9 Run the application. The list box should contain
one item. If you double-click on the item or select
the item and click the Preview button, you should
see the report in the Print Preview window.

Create a Customized Print Preview
Form
1 Close the application and return to the Delphi
development environment.

2 Select File | Open from the Delphi main menu.
Locate the ppPrvDlg unit in the RBuilder\Source
directory. Open this unit.

3 In the Object Inspector, change the form name
from ppPrintPreview to rbPrintPreview. (You may
have to use the drop-down list box at the top of the
Object Inspector to find the ppPrintPreview form).

4 Save the form in the My RB Tutorials directory
under the name rbPrvDlg.

5 Select the panel at the top of the form (named
pnlPreviewBar).

6 Set the color to clAqua.

7 Bring the Code Editor to the front and scroll to
the very bottom of the unit and check the initializa-
tion section of the unit. The code should look like
this:

initialization

ppRegisterForm(TppCustomPreviewer,
TrbPrintPreview);

finalization

ppUnRegisterForm(TppCustomPreviewer);

end.

Note: This register call replaces the built-in
ReportBuilder Print Preview form with this custom
version. The initialization section fires when the
unit is loaded. The unit is loaded only if it appears
in the uses clause of another unit or is included in
the project. For this reason, you should always add
your preview form to your project or add the form's
unit name to the uses clause of your application's
main unit.

8 Select File | Save from the Delphi main menu.

9 Close the Code Editor.

Add the Customized Print Preview
Form to your Project
1 Select the View | Project Manager option from
the Delphi main menu.

2 Right-click over rbMainProj and select the
Add... menu option.

3 Locate rbPrvDlg.pas in the My RB Tutorials
directory and add it to the project.

4 Right-click over rbMainProj and select the
Options... menu item.

5 Select the Forms tab and move the rbPrintPre-
view form from the Auto-create list to the Avail-
able forms list.

6 Select Project | Compile rbMainProj. Fix any
compilation problems.

407Building a Reporting Application

APPLICATION TUTORIALS
7 Select File | Save from the Delphi main menu.

8 Run the application. When you preview the
report, you should see the customized form instead
of the standard ReportBuilder Print Preview form.

Note: You can add all of the tutorial reports to this
project in the same way that we added this one. In
order to see a version of this application that
includes all of the tutorial reports, open the
rbMainProj project in the RBuilder\Tutorials direc-
tory.

409Building an End-User Reporting Application

APPLICATION TUTORIALS
Building an End-User Reporting Application

Overview
This tutorial will show you how to do the follow-
ing:

• Combine ReportBuilder components into an end-
user reporting solution

• Configure Delphi data access objects for use
with the Report Explorer

• Use the Report Designer and Report Explorer
components

Add ReportExplorer tables to the data-
base
The ReportExplorer provides an easy to use inter-
face that enables the user to organize reports into
hierarchical folders. Behind the scenes, the Repor-
tExplorer utilizes two database tables: rbFolder and
rbItem.

For this example we are using Paradox tables.
However, the ReportExplorer can work with any
database product. See RBuilder\Demos\Enduser
Databases for additional examples.

Locate the RBuilder\Demos\Data\EmptyDBs
folder. Copy the rbItem and rbFolder tables to the
folder that contains the Delphi demo data. On a
default installation this will be something like
C:\Program Files\Common Files\Borland
Shared\Data. Make sure to copy rbFolder* and
rbItem* as there are multiple files required to sup-
port each table.

410 Building an End-User Reporting Application

APPLICATION TUTORIALS
Create a New Application
1 Select File | New Application from the Delphi
menu. This will create a new project and a blank
form.

2 Set the Form name to 'myEndUserSolution'.

3 Set the form's Caption to End-User Reporting
Solution.

4 Select File | Save As from the Delphi menu and
save the form under the name rbEndUsr in the My
RB Tutorials directory (established on page 181).

5 Select File | Save Project As.

6 Save the project under the name rbEUProj in the
My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Create Data Access Components for
the Folder Table
1 Select the BDE tab of the Delphi component
palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblFolder
TableName rbFolder.db

4 Add a DataSource component to the form.

5 Configure the DataSource component:

DataSet tblFolder
Name dsFolder

6 Select the RBuilder tab of the Delphi compo-
nent palette.

7 Add a DBPipeline component to the form.

8 Configure the DBPipeline component:

DataSource dsFolder
Name plFolder
Visible False

Note: The Visible property of a DataPipeline con-
trols whether the data pipeline can be selected
within the Report Designer and assigned to a report
or detail band. Since all pipelines created in this
tutorial will be used to store supporting informa-
tion, none should be visible within the Report
Designer.

411Building an End-User Reporting Application

APPLICATION TUTORIALS
Create Data Access Components for
the Item Table
1 Add a Table component to the form.

2 Configure the Table component:

DatabaseName DBDEMOS
Name tblItem
TableName rbItem.db

3 Add a DataSource component to the form.

4 Configure the DataSource component:

DataSet tblItem
Name dsItem

5 Select the RBuilder tab of the Delphi compo-
nent palette.

6 Add a DBPipeline component to the form.

7 Configure the DBPipeline component:

DataSource dsItem
Name plItem
Visible False

Create the ReportBuilder Components

1 Add a Report component to the form.

2 Add a Designer component to the form.

3 Set the Report property of the Designer to
ppReport1.

4 Add a ReportExplorer component to the

form.

5 Set the Designer property of the ReportExplorer
to ppDesigner1.

6 Configure the ReportExplorer component:

FolderPipeline plFolder
ItemPipeline plItem

412 Building an End-User Reporting Application

APPLICATION TUTORIALS
Configure the Designer Component
1 Select the Designer component.

2 Expand the DataSettings property in the Object
Inspector.

3 Set the DatabaseName property to DBDEMOS.

Note: This property specifies the database that will
be queried.

4 Set the SQLType to sqBDELocal.

Note: Since we’re using Local SQL via the BDE,
we need to set the SQL type. If you are not using
Local SQL to access Paradox and dBase tables,
you should use an SQLType of sqSQL1, since the
Local SQL format is not compatible with most
other databases.

5 Add daDatMan, daDBBDE to the uses clause of
the form's unit.

6 Select File | Save from the Delphi main menu.

Note: The daDatMan unit contains a data manager
class that makes the data workspace available from
within the Report Designer. The daDBBDE unit
associates a BDE-based dataview class with the
Query Wizard and Query Designer. Therefore,
these tools will create instances of this dataview
when invoked. This design allows other query dat-
aview classes to be created and associated with
these tools.

Compile and Run the Application
1 Select the Win32 tab of the Delphi component
palette.

2 Add a StatusBar to the form.

3 Configure the StatusBar:

Name stbStatusBar
SimplePanel True

4 Add a Button component to the form.

5 Configure the Button:

Name btnLaunch
Caption Launch

6 Add the following code to the OnClick event of
the button:

if not(ppReportExplorer1.Execute) then
stbStatusBar.SimpleText :=
ppReportExplorer1.ErrorMessage;

Note: This code calls the Execute method to
invoke the Report Explorer. If we have not config-
ured one of the Report Explorer properties cor-
rectly, the form will not be displayed, False will be
returned, and the reason for the failure will be dis-
played in our status bar.

7 Select Project | Compile rbEUProj. Fix any
compilation problems.

8 Select File | Save from the Delphi main menu.

9 Run the Project.

10 Click the Launch button. The Report Explorer
should be displayed. If the Report Explorer is not
displayed, an explanation will be displayed in the
panel at the bottom of the window.

413Building an End-User Reporting Application

APPLICATION TUTORIALS
Create New Folders
1 Select File | New | Folder from the Report
Explorer main menu.

2 Type Marketing in the folder name and press the
Enter key.

3 Select the main folder (entitled All Folders).

4 Right-click over the white space of the Folder
Tree and select the New Folder option from the
popup menu.

5 Type Accounting in the folder name and press
the Enter key.

6 Right-click over the white space of the Folder
Tree and select the New Folder option. A folder
should be created under the Accounting folder.

7 Type 2006 in this folder and press the Enter key.

8 Right-click over the 1998 folder and select the
New Report menu option.

9 Select the File | Save As from the Report
Designer main menu and save the report under the
name Annual Sales.

10 Close the Report Designer.

11 The 'Annual Sales' report should be displayed in
the 1998 folder.

Note: You can create and configure reports from
this point, just as you would from within Delphi.
And as you can see, the Report Explorer is quite
easy to use due to its similarity to the Windows
Explorer.

The running application should look like this:

415Adding Data Dictionary Support to the End-User Application

APPLICATION TUTORIALS
Adding Data Dictionary Support to the End-User Application

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Delphi data access objects for use
with the Data Dictionary

• Configure the Data Dictionary component

• Use the Query Wizard within the Report
Designer

Add DataDictionary tables to the data-
base
The DataDictionary enables you to provide a cus-
tomized view of the database to your end-users.
You can decide which tables and fields the end-
user can see; define table and field aliases; and pre-
define join relationships. Behind the scenes, the
DataDictionary utilizes three database tables:
rbTabe and rbField, and rbJoin.

For this example we are using Paradox tables.
However, the DataDictionary can work with any
database product. See RBuilder\Demos\Enduser
Databases for additional examples.

Locate the RBuilder\Demos\Data\EmptyDBs
folder. Copy the rbTable, rbField, and rbJoin tables
to the folder that contains the Delphi demo data.
On a default installation this will be something like
C:\Program Files\Common Files\Borland
Shared\Data. Make sure to copy rbTable*, rbField*
and rbJoin* as there are multiple files required to
support each table.

416 Adding Data Dictionary Support to the End-User Application

APPLICATION TUTORIALS
Open the End-User Application
1 Select File | Open Project from the Delphi
menu.

2 Open the rbEUProj project from the previous
tutorial. If you have not completed this tutorial,
you can create a new project and add the rbEndUsr
form from the RBuilder\Tutorials directory.

3 Open the rbEndUsr form and save it under the
name 'rbEUDD' in the My RB Tutorials directory
(established on page 181).

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

4 Select File | Save Project As from the Delphi
menu and save the project under the name rbEUD-
DProj in the My RB Tutorials directory.

Create Data Access Components for
the Tables
1 Select the Data Access tab of the Delphi compo-
nent palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName DBDEMOS
Name tblTable
TableName rbTable.db

4 Add a DataSource component to the form.

5 Configure the DataSource component:

DataSet tblTable
Name dsTable

6 Select the RBuilder tab of the Delphi compo-
nent palette.

7 Add a DBPipeline component to the form.

8 Configure the DBPipeline component:

DataSource dsTable
Name plTable
Visible False

Create Data Access Components for
the Field Table
1 Add a Table component to the form.

2 Configure the Table component:

DatabaseName DBDEMOS
Name tblField
TableName rbField.db

3 Add a DataSource component to the form.

4 Configure the DataSource component:

DataSet tblField
Name dsField

5 Select the RBuilder tab of the Delphi compo-
nent palette.

6 Add a DBPipeline component to the form.

7 Configure the DBPipeline component:

DataSource dsField
Name plField
Visible False

417Adding Data Dictionary Support to the End-User Application

APPLICATION TUTORIALS
Create Data Access Components for
the Join Table
1 Add a Table component to the form.

2 Configure the Table component:

DatabaseName DBDEMOS
Name tblJoin
TableName rbJoin.db

3 Add a DataSource component to the form.

4 Configure the DataSource component:

DataSet tblJoin
Name dsJoin

5 Select the RBuilder tab of the Delphi compo-
nent palette.

6 Add a DBPipeline component to the form.

7 Configure the DBPipeline component:

DataSource dsJoin
Name plJoin
Visible False

Create the Data Dictionary Component

1 Add a DataDictionary component to the

form.

2 Configure the DataDictionary component:

AutoJoin True
BuilderSettings.DatabaseName DBDEMOS
FieldPipeline plField
JoinPipeline plJoin
TablePipeline plTable

3 Select File | Save from the Delphi main menu.

Populate the Tables
1 Double-click on the DataDictionary component
to launch the Data Dictionary Builder.

2 Right-click over the white space of the Tables
tab and select Generate. The tables will generate.

3 Click the Fields tab and then generate the
entries.

4 Click the Joins tab. Right-click and select the
Add menu option. The join panel will appear.

5 Select Customer.db from the table list on the
left.

6 Select Left Outer from the Join Type drop-down
list.

7 Select Orders from the table list on the right.
The suggested join fields will appear in the Joined
Fields section of the panel.

8 Double-click on TaxRate to remove it from the
join selection.

9 Click Save.

10 Right-click and select Add. The join panel will
appear.

11 Select Orders.db from the table list on the left.

12 Select Left Outer from the Join Type drop-down
list.

13 Select Employee from the with table list on the
right. The suggested join fields will appear in the
Joined Fields section of the panel.

14 Click Save.

15 Close the Data Dictionary Builder.

418 Adding Data Dictionary Support to the End-User Application

APPLICATION TUTORIALS
Configure the Designer Component

1 Select the Designer component on the

form.

2 Expand the DataSettings property in the Object
Inspector.

3 Set the DatabaseName property to DBDEMOS.

Note: The DatabaseName indicates the database
that contains the data to be retrieved by the
reports. In order to keep this tutorial simple, we
have used the same database alias for the data dic-
tionary and report data tables. This is not a
requirement. You could store the data dictionary
in local tables and build queries over a remote data-
base.

4 Set the DataDictionary property to
ppDataDictionary1.

5 Set the UseDataDictionary property to True.

Note: Setting both of these properties allows the
Designer to display the TableAlias and FieldAlias
values from the data dictionary tables instead of the
raw field names. Also the Selectable, Searchable
and Sortable field values will be used to determine
if a particular field can appear on the Select Field,
Search Criteria and Set Order pages of the Query
Wizard and Query Designer.

6 Select File | Save from the Delphi main menu.

Compile and Run the Application
1 Select Project | Compile rbEUDDProj. Fix any
compilation problems.

2 Select File | Save from the Delphi main menu.

3 Run the Project.

Create a Simple Query
1 Create a new report.

2 Select the Data tab of the Report Designer.

3 Select File | New.

4 Select the Query Wizard.

5 Select the Customer table from the list of avail-
able tables. Scroll down and select the Orders
table.

6 Click the Next button.

7 Click the Choose Fields option.

8 Select Company, Contact, State, Order No., and
AmountPaid and move them to the Selected Fields
list.

9 Skip the next four pages by clicking Next until
you reach the last page.

10 Click the Finish button. The data will be dis-
played.

11 Close the Data Preview dialog.

419Adding Data Dictionary Support to the End-User Application

APPLICATION TUTORIALS
12 The Dataview will appear in the workspace of
the Data tab.

13 Click on the Design tab.

Create a Simple Report
1 Select File | New from the Report Designer
main menu.

2 Select the Report Wizard.

3 Select all of the available fields.

4 Select the remaining options based on your pref-
erences.

5 After you've clicked the Finish button and
returned to the Design tab, save your report under
the name 'Orders.'

421Customizing the Report Explorer Form

APPLICATION TUTORIALS
Customizing the Report Explorer Form

Overview
This tutorial will show you how to do the follow-
ing:

• Replace the Report Explorer form with a form of
your own

• Use the ppRegisterForm procedure

Open the End-User Application
1 Select File | Open Project from the Delphi
menu.

2 Open the rbEUProj project from the “Building
an End-User Application” tutorial. If you have not
completed this tutorial, you can create a new
project and open the rbEndUsr form from the
RBuilder\Tutorials directory.

3 Close the rbEndUsr form.

4 Select File | Save Project As from the Delphi
menu and save the project in the My RB Tutorials
directory (established on page 181) under the name
rbREProj.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Create a New Report Explorer Form
1 Select File | Open... menu from the Delphi main
menu.

2 Locate the ppExpFrm.pas unit in the
RBuilder\Source directory.

3 Open this form.

4 Change the form name from ppReportExplorer-
Form to rbReportExplorerForm.

422 Customizing the Report Explorer Form

APPLICATION TUTORIALS
5 Select the panel at the top of the form (named
tbrExplorer) and use the Object Inspector to set the
color to clMaroon.

6 Scroll to the bottom of the form unit and inspect
the initialization section. It should contain the fol-
lowing:

initialization

ppRegisterForm(TppCustomReportExplorer,
TrbReportExplorerForm);

finalization

ppUnRegisterForm(TppCustomReportExplorer);

end.

Note: The Delphi Code Editor automatically
changed the class name of the form from ppRepor-
tExplorerForm to rbReportExplorerForm when
you changed the form name in the Object Inspec-
tor. This call will replace the 'official' explorer
form with the new form we've created.

Note: In order for the initialization section of this
new form unit to fire (thus calling the ppRegister-
Form routine), we must include this unit in the
project. If we do not include this unit in the
project, then the standard report explorer will be
used.

7 Save the form under the name rbExpFrm in the
My RB Tutorials directory.

8 Close the form.

9 Select View | Project Manager from the Delphi
main menu.

10 Add rbExpFrm to the project and remove the
form from the project's auto-create list (Options |
Forms tab).

11 Select File | Save from the Delphi main menu.

12 Run the application. When you click the
Launch button you should see a maroon toolbar
instead of a silver one (indicating that the custom
explorer form is being used).

Note: As you can see, you now have total control
over the look, feel, and behavior of the Report
Explorer form. If you review the source of this
form, you'll see that it is calling various functions
in the Report Explorer component. These func-
tions are documented in the help.

The customized run-time application should look
like this:

423Building a Report Application using InterBase

APPLICATION TUTORIALS
Building a Report Application using InterBase

Overview
This tutorial will show you how to do the follow-
ing:

• Configure Delphi data access objects for use by
the Report Explorer

• Create the InterBase tables required by the
Report Explorer

• Use the Report, Report Designer, and Report
Explorer components

• Create the InterBase tables required by the Data
Dictionary (optional)

Review the Create Tables SQL script
for the Report Explorer
Note: This tutorial requires that you have Inter-
Base installed and know how to use it. The con-
cepts covered in this tutorial can be adapted to
other SQL based databases. The SQL scripts used
to create the InterBase tables can likewise be used
as a starting point for creating scripts for other
types of SQL databases. However, examples for a
number of popular database products are included
with ReportBuilder. These examples can be found
in RBuilder\Demos\EndUser Databases.

Note: The Report Explorer is connected to Inter-
Base tables in this tutorial. Thus, the folders and
reports created by the end user are stored in Inter-
Base tables. The Report Designer is also con-
nected to InterBase to enable the end user to use
the Query Wizard to build data views. It is also
possible to connect the Report Explorer and Report
Designer to separate databases. For some applica-
tions it may make sense to connect the Report
Explorer to local database tables and connect the
Report Designer to a database server such as Inter-
Base. Under this scenario each end user would
have his own set of folders and reports.

1 Select File | Open from the Delphi main menu
to access the Open dialog.

2 Select the Any File (*.*) option from the Files
of Type list at the bottom of the dialog.

3 Locate the RBuilder\Tutorials directory and
open the ExploreTables.sql file.

424 Building a Report Application using InterBase

APPLICATION TUTORIALS
4 Find the Connect statement at the top of the file
and review the database, user name, and password
parameters. The database name is configured to
access the employee demo database that is installed
with InterBase. Modify the parameters as needed
to reflect your InterBase installation.

CONNECT "C:\Program Files\Common
Files\Borland Shared\Data\employee.gdb"
USER "SYSDBA" PASSWORD "masterkey";

5 Review the create statements for the folder
table. The table is created first, followed by two
indexes. Next a generator and a trigger are created
for the folder_id value.

Note: Do not modify the table or index definitions.
Do not add field constraints such as NOT NULL or
UNIQUE. Do not define a primary key. The
Report Explorer is designed to support desktop and
client/server databases. This requirement limits
the flexibility of the table definitions. Adding field
constraints such as those described above will
result in Delphi run-time errors in your end-user
reporting application.

Code The SQL for creating the Folder table:

/* create Folder table */

CREATE TABLE rb_folder
(folder_id INTEGER,
name VARCHAR(60),
parent_id INTEGER);

CREATE INDEX folder_idx ON rb_folder (folder_id);

CREATE INDEX parent_idx ON rb_folder (parent_id);

COMMIT;

/* create generator for folder id */

CREATE GENERATOR folder_id_gen;
SET GENERATOR folder_id_gen to 1;

/* create trigger to add unique folder id */

SET TERM !! ;
CREATE TRIGGER set_folder_id FOR rb_folder
BEFORE INSERT
AS
BEGIN

new.folder_id = gen_id(folder_id_gen, 1);
END !!
SET TERM ; !!
COMMIT;

425Building a Report Application using InterBase

APPLICATION TUTORIALS
6 Review the create statements for the item table.
The table is created first, followed by two indexes.
Next, a generator and a trigger are created for the
item_id value.

Run the Create Tables SQL Script
1 Select Database | Explore from the Delphi main
menu to access the Database Explorer

2 Double-click the database alias corresponding
to your Interbase database. The alias for a default
installation of the local InterBaser server is IBLO-
CAL.

3 Enter 'masterkey' as the password and click OK.

4 Right-click to access the popup menu for the
database. Select 'ISQL' to access the InterBase
ISQL utility.

5 Select 'File | Run an ISQL Script' from the main
menu of the InterBase ISQL utility. Open the
ExploreTables.sql file. A 'Save output to a file?'
dialog will be displayed.

6 .Click the No button.

Code The SQL for creating the Item table

/* create Item table */
CREATE TABLE rb_item
(item_id INTEGER,
folder_id INTEGER,
name VARCHAR(60),

item_size INTEGER,
item_type INTEGER,
modified FLOAT,

deleted FLOAT,
template BLOB SUB_TYPE 0 SEGMENT SIZE 400);

CREATE INDEX item_idx ON rb_item (item_id);

CREATE INDEX folder_item_name_idx ON rb_item (folder_id, item_type, name);

COMMIT;

/* create generator for item id */

CREATE GENERATOR item_id_gen;
SET GENERATOR item_id_gen to 1;

/* create trigger to add unique item id */

SET TERM !! ;
CREATE TRIGGER set_item_id FOR rb_item
BEFORE INSERT
AS
BEGIN

new.item_id = gen_id(item_id_gen, 1);
END !!
SET TERM ; !!
COMMIT;

426 Building a Report Application using InterBase

APPLICATION TUTORIALS
Note: The SQL script should connect to the data-
base and create the database objects. If you receive
a message indicating the script completed with
errors, then review the output information - error
messages are displayed following the statement in
which the error occurred.

7 Close the InterBase ISQL window.

8 Close the Database Explorer.

Create a New Application
1 Select File | New Application from the Delphi
main menu. This will create a new project and
blank form.

2 Set the Form name to 'frmEndUserInterBase'.

3 Set the form's Caption to End-User Reporting
Solution.

4 Select File | Save As from the Delphi menu and
save the form under the name rbEUIB in the My
RB Tutorials directory (established on page 181).

5 Select View | Project Manager from the Delphi
main menu.

6 Right-click over the project name in the Project
Manager (usually Project1.exe) and select the Save
menu option.

7 Save the project under the name rbEUIBProj in
the My RB Tutorials directory.

Note: Save your work frequently to avoid losing
changes should your computer unexpectedly lose
power or crash.

Create Data Access Components for
the Folder Table
1 Select the Data Access tab of the Delphi compo-
nent palette.

2 Add a Database component to the form.

3 Configure the Database component:

AliasName IBLocal
DatabaseName rbData
Name rbData
LoginPrompt False
Params USER NAME=SYSDBA

PASSWORD=masterkey

4 Test the database connection by setting the Con-
nected property of the Database component to
True. Resolve any errors and reset the property to
False.

5 Add a Table component to the form.

6 Configure the Table component:

DatabaseName rbData
Name tblFolder
TableName RB_FOLDER

7 Add a DataSource component to the form.

8 Configure the DataSource component:

DataSet tblFolder
Name dsFolder

9 Select the RBuilder tab of the Delphi compo-
nent palette.

10 Add a DBPipeline component to the form.

427Building a Report Application using InterBase

APPLICATION TUTORIALS
11 Configure the DBPipeline component:

DataSource dsFolder
Name plFolder
RefreshAfterPost True
Visible False

Note: We set the DBPipeline.Visible property to
False so that the Report Designer will not display
this data pipeline.

Create Data Access Components for
the Item Table
1 Select the Data Access tab of the Delphi compo-
nent palette.

2 Add a Table component to the form.

3 Configure the Table component:

DatabaseName rbData
Name tblItem
TableName RB_ITEM

4 Add a DataSource component to the form.

5 Configure the DataSource component:

DataSet tblItem
Name dsItem

6 Select the RBuilder tab of the Delphi compo-
nent palette.

7 Add a DBPipeline component to the form.

8 Configure the DBPipeline component:

DataSource dsItem
Name plItem
RefreshAfterPost True
Visible False

Create the ReportBuilder Components

1 Add a Report component to the form.

2 Add a Designer component to the form.

3 Set the Report property of the Designer to
ppReport1.

4 Configure the Designer component:

DataSettings.DatabaseName rbData
DataSettings.SQLType sqSQL2
Database Type dtInterbase

Note: The DataSettings property of the Designer
contains a number of properties used to control the
database connection and data access. The SQL-
Type should be set to sqSQL2 for database servers
and to sqlBDELocal for desktop databases such as
Paradox and dBase.

5 Add a ReportExplorer component to the form.

6 Set the Designer property of the ReportExplorer
to ppDesigner1.

7 Configure the ReportExplorer component:

FolderPipeline plFolder
FolderFieldNames.FolderId FOLDER_ID
FolderFieldNames.Name NAME
FolderFieldNames.ParentId PARENT_ID
ItemPipeline plITEM
ItemFieldNames.Deleted DELETED
ItemFieldNames.FolderId FOLDER_ID
ItemFieldNames.ItemId ITEM_ID
ItemFieldNames.ItemType ITEM_TYPE
ItemFieldNames.Modified MODIFIED
ItemFieldNames.Name NAME
ItemFieldNames.Size ITEM_SIZE
ItemFieldNames.Template TEMPLATE

428 Building a Report Application using InterBase

APPLICATION TUTORIALS
Note: For simplicity, we've defined our database
tables so that the table field names correspond
closely with the ItemFieldName and FolderField-
Name properties. The exception is the item_size
field, which is assigned to the ItemField-
Names.Size property. 'Size' is a reserved word in
InterBase and therefore cannot be used as a field
name.

Note: While it is acceptable to name the fields dif-
ferently in your database table, it is not acceptable
to change the data types or other field attributes, as
the Report Explorer relies on these names.

Run the Application
1 Select the Win32 tab of the Delphi component
palette.

2 Add a StatusBar to the form.

3 Configure the StatusBar component:

Name stbStatusBar
SimplePanel True

4 Add a Button component to the form.

5 Configure the Button component:

Name btnLaunch
Caption Launch

6 Add the following code to the OnClick event
handler of the button:

Session.SQLHourGlass := False;

if not(ppReportExplorer1.Execute) then
stbStatusBar.SimpleText:=
ppReportExplorer1.ErrorMessage;

Note: First we set the SQLHourGlass property to
False. We do not want the cursor to be displayed
when using the Report Explorer to create folders
and reports. Next, we called the Execute method to
invoke the Report Explorer. If we have not config-
ured one of the Report Explorer properties cor-
rectly, the form will not be displayed and False will
be returned. The reason for the failure will be dis-
played in the 'status bar.'

7 Add the following units to the 'uses' clause at
the top of the form unit: daDatMan, daDBBDE.

Note: The daDatMan unit contains a data manager
class that makes the data workspace available from
within the Report Designer. The daDBBDE unit
associates a BDE-based dataview class with the
Query Wizard and Query Designer. Therefore,
these tools will create instances of this dataview
when invoked. This design allows other query dat-
aview classes to be created and associated with
these tools.

8 Select Project | Compile rbEUIBProj. Fix any
compilation problems.

9 Select File | Save from the Delphi main menu.

10 Run the Project.

11 Click the Launch button. The Report Explorer
should be displayed.

Note: If the Report Explorer is not displayed, an
explanation will be given in the panel at the bottom
of the window.

429Building a Report Application using InterBase

APPLICATION TUTORIALS
Create New Folders
1 Select File | New | Folder from the Report
Explorer main menu.

2 Type Marketing in the folder name and press the
Enter key.

3 Select the main folder (entitled All Folders).

4 Right-click over the white space of the Folder
Tree and select the New Folder option from the
popup menu.

5 Type Accounting in the folder name and press
the Enter key.

6 Right-click over the white space of the Folder
Tree and select the New Folder option. A folder
should be created under the Accounting folder.

7 Type 1998 in this folder and press the Enter key.

8 Right-click over the 1998 folder and select the
New Report menu option.

9 Select File | Save As from the Report Designer
main menu and save the report under the name
Annual Sales.

10 Close the Report Designer. The Annual Sales
report should be displayed in the 1998 folder.

The application should look like this after saving
the report:

Note: You can create and configure reports from
this point, just as you would from within Delphi.
And as you can see, the Report Explorer is quite
easy to use due to its similarity to the Windows
Explorer.

Note: Using the Data Dictionary is optional. The
SQL script for adding the Data Dictionary tables is
called DataDictTables.sql and is located in the
RBuilder\Tutorials directory. You can refer to the
tutorial called “Adding Data Dictionary Support to
the End-User Application” for additional informa-
tion on configuring the relevant components and
properties.

431Appendix
APPENDIX

Where Do I Go From Here?

ReportBuilder has many other resources that can
aid beginners and proficient users alike.

The Digital Metaphors Website
The material below, with the exception of the help
files, can be found at:

www.digital-metaphors.com

Learning ReportBuilder
After you build your end-user application and are
ready for distribution, you can send your end users
to our website to download Learning Report-
Builder, which is a complete learning system
devised for end users. It comes with a stand-alone
application, a database, a 125-page series of tutori-
als in PDF format, and a help file complete with a
glossary.

ReportBuilder Help
RB Help is accessible from the Delphi main menu
or the Report Designer main menu. You can also
select an object and press F1 for help on that
object. The RB Help file includes installation
information and documents the Delphi Component
Palette, bands and groups, and the RB Component
Palette. It also provides troubleshooting tips and a
history of RB versions.

RAP Help
RAP Help is accessible from the RB Help file. It
offers an explanation of RAP, a set of tutorials,
information on programming with RAP, and a lan-
guage reference section. It also provides pointers
on scaling RAP to meet the needs of your users and
extending RAP.

ReportBuilder Newsgroups
The following list of newsgroups are accessible
from the Support section of our website:

digital-metaphors.public.reportbuilder.tech-tips
tech tips posted by digital metaphors

digital-metaphors.public.reportbuilder.general
general report building

digital-metaphors.public.reportbuilder.rap
run-time Pascal development environment

digital-metaphors.public.reportbuilder.subreports
using free-form subreports

digital-metaphors.public.reportbuilder.end-user
developing end-user reporting solutions

digital-metaphors.public.reportbuilder.datapipelines
report data access: database, textfiles, stringlists...

digital-metaphors.public.reportbuilder.devices
report output: printer, screen, file, archive...

432 Appendix
ReportBuilder Newsgroups - cont.

digital-metaphors.public.reportbuilder.component-writing
custom report components, datapipelines, and
devices

digital-metaphors.public.reportbuilder.beta
beta program for upcoming releases

Take advantage of these newsgroups: they afford
you the opportunity to peer into and / or join the
ReportBuilder community. Please read the set of
guidelines before posting.

Further Support
The newsgroups are an excellent resource for tech-
nical support, but if you prefer other methods, they
are available:

• Mail: support@digital-metaphors.com

Please include a concise description of the issue
and specify the following information: Delphi ver-
sion, ReportBuilder version, Operating System,
and Printer model.

• Phone: 214.239.9471

Pay per minute support from a Digital Metaphors
engineer is available for US $3.00 per minute. Dig-
ital Metaphors engineers are available from 9:00
am to 4:30 pm (Central Time), Monday through
Friday. Please note that using e-mail is the pre-
ferred method for reporting bugs. Phone support is
charged on a US $3.00 flat rate regardless of sub-
ject matter.

• Fax: 267.501.5740

433Index
INDEX

A
Address

example code for 69
Advanced Component Palette 98
Align 101
Align or Space Toolbar

description of 101
usage of 231, 250

AllowDataSettingsChange property 153
AllowEditSQL property 181
AllowPrintToArchive property 123
AllowPrintToFile property 125
AllowSaveToFile property 153
application deployment 131, 225
applications

Adding Data Dictionary Support to the End-User
App 415

Building a Report App. using InterBase 423
Building a Reporting Application 401
Building an End-User Reporting App. 409

archive
print report to 123

ArchiveFileName property 123
ArchiveReader Component

description of 27, 151
ASCII

about 125
ave 197
Average 19

B
bands 14

BeforePrint event of 20
detail 4, 8
dynamic 20
footer 4, 234
header 4, 7
PrintHeight property of 20
resizing 17
summary 265
title 325
Visible property of 20

BarCode
description of 30, 97

BDE Alternatives
Advantage 55
Opus 55

BDEPipeline 49
about 49
description of 27, 151

BinName property 119
BLOB field 132
bookmarks

limiting data traversal using 51
BottomOffset property 33

usage of 275
bounding box method 233

C
Calc Workspace 148, 193

Code Editor 196
Code Explorer 194
Code Toolbox 197
overview 193

CalcOrder property 73
CalcType property 75
calculated fields 19
calculations

performing 19, 73
CheckBox

description of 30, 97
Code Editor

compile 197
delete 197
new 197
revert 197
save 197

Code Explorer
events view 194
global scoping 196
module view 195
variables view 194

Code reports
how to 83

434 Index
Code Toolbox
Data tab 198
Language tab 199
Objects tab 198

CodeSite
compiling 213

CodeSite functions
using 212

Collation property 119
columns

using to create mailing labels 329
component

selection
Ctrl-click method 232
Shift-click method 233

visibility 20
component editor 17
Component Palette 13
components

ArchiveReader 27, 151
BarCode 30, 97
BDEPipeline 27, 151
CheckBox 30, 97
CrossTab 31, 98
DataDictionary 152
DBBarCode 31, 97
DBCalc 31, 97
DBCheckBox 31, 97
DBImage 31, 97
DBMemo 30, 97
DBPipeline 27, 151
DBRichText 31, 97
DBTeeChart 31, 97
DBText 30, 97
Designer 152
Image 30, 96
JITPipeline 27, 151
Label 8, 96
Memo 29, 96
Region 31, 98
Report 27, 151
ReportExplorer 152
RichText 29, 96
Shape 30, 96
SubReport 31, 98
SystemVariable 30, 96
TeeChart 30, 96
TextPipeline 27, 151
Variable 30, 96
Viewer 27, 151

Concatenation
example code for 68

Conditional Grand Total
about 80

Conditional Group Total
about 79

Configure property
usage of 351

Configuring Reports 67
Continued Group

example code for 70
Controlling Data Traversal

about 50
Copies property 119
Count

about 74
calculating 19
Master/Detail records 75

Crosstab Component
description of 31, 98
usage of 350

Crosstab Designer 350
Crosstab report

creating 349
Cumulative Sum

about 78
CustomDataPipeline class 61
CustomPreviewer class 117

D
daCustomDataView class 183
daDataSet class 184
daDataView class 183
DADE

about 167
architecture 183
configuring 181
extending 185

daQueryDataView class 184
daSession class 184
daSQL class 184
data

filtering 19
data access

about 53
data pipeline types 49
description of 25
objects

configuring 7
Data Access Development Environment

See DADE
Data Component Palette

description of 97

435Index
Data Dialog 94
Data Dictionary 159
data module 132, 226
data pipelines

BookmarkList property of 51
dataviews and 167
in Data Tree 8
RangeBegin property of 51
RangeEnd property of 51
retrieving field values via 59

Data Process 25
Data Tab 147
data traversal

controlling 50
controlling via data pipelines 49

Data Tree
about 105
creating a report via 229
data tab 105
description of 95
drag-and-drop settings of 15
layout tab 15, 105
usage of 232, 274, 293

data workspace 167
data-aware components

creating via Data Tree 15
See DB

database templates 134
DatabaseName property 181
DataDictionary property 181
DataSettings property 153
DataSource Component

usage of 7
DataType 20
dataview

about 147, 167
classes 188
templates

the end-user view 185–186
the implementation 187

DBBarCode
description of 31, 97

DBCalc
about 73
description of 31, 97
usage of 268

DBCheckBox
description of 31, 97

DBImage
description of 31, 97
usage of 274

DBMemo
description of 30, 97
usage of 275

DBPipeline 7
about 49
description of 27, 151
usage of 7

DBRichText
description of 31, 97

DBTeeChart
description of 31, 97

DBText
description of 30, 97
usage of 8, 251

de 196
Delphi Components 27
Delphi Event Model 65
Delphi Objects 59
deploying

as an exe 131
as packages 131
end-user reporting solution and 225

deploying reports
in a database table 132
in an executable 131
in template files 132

design 4
Design Tab 89
design workspace 89, 149
Designer

description of 152
Designer property 157
Detail Band

about 4
usage of 8

DeviceType property 123–125
dialogs

Data 94
Groups 93
Page Setup 92
Print 91
Print to File Setup 93

display formats
setting 17

DocumentName property 119
drag-and-drop capabilities

See Data Tree
Draw Toolbar

description of 103
usage of 250

dule 195
Duplex property 119
Dynamic Configuration 67

436 Index
E
Edit Toolbar 14, 99
EditMask

as DisplayFormat 20
end-user reporting solution 147, 161
ent 201
equation

of reporting paradigm 25, 147
ert 197
event model 65
events 65

F
Field Editor 57
field values

retrieving via data pipelines 59
FieldFieldNames property 159
FieldPipeline property 159
filtering data 19
FolderFieldNames property 157
FolderPipeline property 157
Font color

example code for 67
Font property

setting on-the-fly 67
Footer Band

about 4
usage of 234

Format Toolbar
about 14
description of 100

Forms Emulation with a WMF Image report
creating 281

Functions 209

G
g 202
generation 5, 115
grand total

about 77
conditional 77

group
creating a 257

group header band
conditional regions in 71

groups
’Continued...’ label and 70
creating via the Report Wizard 110
totals in 76
two pass totals in 81

Groups Dialog 93
Groups, Calculations, and the Summary Band report

creating 255

H
Header Band

about 4
usage of 7

horizontal ruler
options for units of measurement 249

HTML 129

I
Icon property 153
Image Component

description of 30, 96
InterBase

creating a report app. using 423
International Language Support 139
ItemFieldNames property 157
ItemPipeline property 157

J
JITPipeline

about 49, 59
description of 27, 151
usage of 341

L
Label Component

description of 96
usage of 248

Label Template Wizard
usage of 331

labels
created for mailing 329

language support
about 139
custom translations 141
default language 140

les 194
Line Component

usage of 250
lookup tables/queries 19

437Index
M
mailing labels

creating 329
MailMerge

usage of 347
MaintainAspectRatio

usage of 274
Margins property 119
Master/Detail report

creating a 289
Master/Detail/Detail report

creating a 303
Maximum 19
Memo Component

description of 29, 96
OverFlow property 34
Stretch property 34
stretching 20

Minimum 19
ModalForm property 157
ms 201
MS Access

SQLType 181

N
Native Access to Proprietary Data 61
Nudge Toolbar 102

O
OnCalc 20
OnCalc event 73
OnCalcFields event 19
On-Line Help 163
OnPrint event 67
OnReset event 73
Orientation property 119
OverFlowOffset property 33

P
packages 137
page objects 116
Page Setup Dialog 92
page style 43
PageLimit 18
PaperHeight property 119
PaperName property 119
PaperWidth property 119
Performing Calculations 73
pile 197
piling 202
Preview Tab 89

Preview workspace 149
previewing 117
Print Dialog 91
print method 123
print preview form 115

customized 405
Print to ASCII Text file 125
Print to File Setup Dialog 93
PrinterName property 119
PrinterSetup property 119
printing

from a Text File 337
to a Text File 333
to printer 115
to screen 115

printing settings 119
process 4
proprietary data

native access to 61

Q
Query Designer

adding search criteria via 173–175
concatenating fields via 178–179
creating an SQL GROUP BY via 175–177
editing SQL generated by 180
usage of 173

Query Wizard
about 169
Create a Simple Query-Based Dataview via 169–

172

438 Index
R
raf file extension 123
RAP 201

about 191
adding classes and properties 210
Adding Functions to 367
adding functions to 209
Calc Workspace 193
calling procedures and functions 204
CodeSite

using 212
CodeSite support 211
coding an event handler 201
Color-Coding Components 359
compiling event handlers 202
Concatenating Fields 355
configuring 205
debugging 211
declaring global constants 203
declaring global procedures 203
declaring global variables 202
declaring local constants 202
declaring local variables 202
Displaying Delphi Forms from 387
Dynamic Duplexing 363
end user configurations 205
extending 209
Extending RTTI 373
overview 191
pass-through functions 209
Printing Description of AutoSearch Criteria 373
procedure and function parameters 204
programs 201
Writing RAP Code 201

RAPInterface property 153
RAPOptions property 153
Region Component

description of 31, 98
example code for 71
used to logically group dynamic components 271

Report 25
A Simple Report the Hard Way 247
archiving 121
Creating a Report Via the Data Tree 229
Creating a Report Via the Report Wizard 237
creating from an ancestor class 402
deployment 131, 225
emulation 127
End-User Report Solution 154
loading and saving 134
PageLimit property 18
print method 9
tabular

creating 238
templates 133
vertical

creating 240
Report Archive File 123
Report Component

description of 27, 151
usage of 7
Visible property of 20

report components 29–31
report creation

design 4
generation 5, 115
process 4
select 3

Report Designer
about 89
usage of 283
working with the 17

Report Emulation Text File 127
report engine

data traversal and the 50
Report Explorer

about 217
Customizing the Report Explorer Form 421
description of 157
toolbar 217

report layout
about 25
saving to a database 134
saving to a file 133

report outline
See Report Tree

report output 25
Report property 153
report templates 133
Report Tree

about 14
description of 95

Report Wizard
creating a report via the 237
creating a simple report via the 107–109
creating groups via the 110–111

Report.Template.Format property 133
ReportBuilder

Delphi components of 27
fundamentals 25–141

ReportBuilder Enterprise
Delphi Components of 151
deploying 225
fundamentals 147–226

ReportExplorer Component
description of 152
folder table of 217
item table of 217

ReportTextFile device 127

439Index
ReprintOnOverFlow property 33
ResetGroup property 75
RichText Component

description of 29, 96
usage of 346

RichText editor
usage of 347

RTF 128
rtm file extension 133
rulers 14

S
Scoping 196
select 3
SessionType property 181
Shape Component

description of 30, 96
usage of 293

shapes
stretching 20

ShiftRelativeTo property 33
ShowComponents property 153
ShowPrintDialog property 123, 125
Size Toolbar

description of 102
usage of 268

SQL
GROUP BY

creating 175
with applications 425

Standard Component Palette
description of 96

Standard Toolbar
description of 98

Status Bar 14
StopPosition property 33
stretching

memos and shapes 20
StretchWithParent property 33
Style menu option

usage of 352
SubReport Component

description of 31, 98
example code for 72
usage of 291

SubReports
for hooking reports together 319
section-style

usage of 319
Sum 19
Summary Band

usage of 265
supplying data

about 49
SystemVariable Component

description of 30, 96
usage of 252

T
Table Component

usage of 7
table creation 410
TableFieldNames property 159
TablePipeline property 159
tables

creating 416
populate 417

TabsVisible property 153
tabular report

creating 238
TeeChart Component

description of 30, 96
templates 133
text files 57
TextFile device 125
TextPipeline Component

about 49
description of 27, 151

TField objects 19
Title Band

usage of 325
title page

example of 325
toolbars 95–103

Advanced Component Palette 98
Align or Space 101, 231, 249
Component Palette 13
Data Component Palette 97
Data Tree 95, 232
Draw 103, 250
Edit 99
Format 14, 100
Nudge 102
Report Explorer 217
Size 102, 268
Standard 98
Standard Component Palette 96

two-pass mode
about 240

440 Index
U
UseDataDictionary property 181
User Interface 13

V
Variable Component

about 73
DataType property of 20
description of 30, 96
OnCalc event of 20
usage of 309

vertical report
creating 240

Viewer Component
description of 27, 151

Z
zoom

in print preview form 117

	Introduction
	The Basics
	A Quick Test Spin
	The Best Way to Learn ReportBuilder?
	Elements of the User Interface
	Working with the Report Designer
	Reporting Basics

	ReportBuilder Fundamentals
	Main
	Introduction
	The Delphi Components
	Report Components
	Smart Layouts
	SubReports
	Form Emulation

	Data
	Introduction
	Database Support
	Database Alternatives
	Text Files
	Delphi Objects
	Native Access to Proprietary Data

	Code
	The Delphi Event Model
	Dynamic Configuration
	Performing Calculations
	Creating Reports in Code

	Design
	The Report Designer
	Dialogs
	Toolbars
	Drag and Drop Support
	The Report Wizard

	Print
	Introduction
	Previewing
	Custom Printing Settings
	PDF
	Report Archiving
	Print to ASCII Text
	Report Emulation Text File
	RTF, HTML, and Other Formats
	Emailing Reports

	Deploy
	Introduction
	Report Templates
	As an EXE
	As Packages
	International Language Support

	ReportBuilder Enterprise Edition Fundamentals
	Main
	Introduction
	The Delphi Components
	Designer Component
	Report Explorer
	Data Dictionary
	Putting It All Together
	On-Line Help

	Data
	Introduction
	Query Wizard
	Query Designer
	Configuring DADE
	DADE Architecture
	Extending DADE

	Code
	Introduction
	The Calc Workspace
	Writing RAP Code
	Configuring RAP
	Extending RAP
	Debugging RAP Code

	Design
	The Report Explorer

	Print
	End-User Options

	Deploy
	Summary

	Report Tutorials
	Creating a Report Via the Data Tree
	Creating a Report Via the Report Wizard
	A Simple Report the Hard Way
	Groups, Calculations, and the Summary Band
	Using Regions to Logically Group Dynamic Components
	Forms Emulation with a WMF Image
	Master Detail Report
	Master Detail Detail Report
	Interactive Previewing with Drill-Down Subreports
	Hooking Reports Together with Section-Style Subreports
	Using Columns to Create Mailing Labels
	Printing to a Text File
	Printing from a Text File
	Using the JITPipeline to Print from a StringGrid
	Using the Rich Text Component for Mail/Merge
	Creating a Crosstab

	Rap Tutorials
	Concatenating Fields
	Color-Coding Components
	Dynamic Duplexing
	Adding Functions to RAP
	Extending the RAP RTTI
	Printing a Description of AutoSearch Criteria
	Displaying Delphi Forms from RAP

	Application Tutorials
	Building a Reporting Application
	Building an End-User Reporting Application
	Adding Data Dictionary Support to the End-User Application
	Customizing the Report Explorer Form
	Building a Report Application using InterBase

	Appendix
	Index

